WEB TECHNOLOGIES

UNIT-1

What is the Internet?

The Internet is a worldwide network of computer networks that connects university, government,
commercial, and other computers in over 150 countries. There are thousands of networks, tens of
thousands of computers, and millions of users on the Internet, with the numbers expanding daily.
Using the Internet, you can send electronic mail, chat with colleagues around the world, and
obtain information on a wide variety of subjects.

Three principal uses of the Internet are:

o Electronic mail. Electronic mail, or e-mail, lets you electronically "mail" messages to
users who have Internet E-mail addresses. Delivery time varies, but it's possible to send
mail across the globe and get a response in minutes. LISTSERVSs are special interest
mailing lists which allow for the exchange of information between large numbers of
people.

o USENET newsgroups. USENET is a system of special interest discussion groups, called
newsgroups, to which readers can send, or "post™ messages which are then distributed to
other computers in the network. (Think of it as a giant set of electronic bulletin boards.)
Newsgroups are organized around specific topics, for example, alt.education.research,
alt.education.distance, and misc.education.science.

« Information files. Government agencies, schools, and universities, commercial firms,
interest groups, and private individuals place a variety of information on-line. The files
were originally text only, but increasingly contain pictures and sound.

How Do | Explore the Internet?

To access the Internet, you'll need a personal computer, a modem (or direct link to a network),
telecommunications software, a telephone line, and an Internet account. Don't worry--this is
easier than it sounds, but it still helps when you're getting started to have a few good books on
the subject, or better yet, a friend who's an experienced "cyber surfer." Many universities provide
Internet accounts to their faculty and students at little or no cost. Commercial vendors will
provide Internet service for a fee. Make sure that you access your Internet provider with a local
telephone call--otherwise, long distance charges will apply.

The easiest way for new users to navigate the Internet may be through the “gopher,” a
navigational system that uses a series of menus to organize and provide access to information.
Unfortunately, "gopher,” while easy to use, provides text-only information. It is much more

rewarding to take full advantage of the multimedia opportunities available on the World-Wide
Web (WWW). This system organizes information to provide for linkages to related documents
(hypertext links), which allow users to move quickly and easily to related documents.

Software such as Mosaic and Netscape give users a graphical interface and (theoretically) allow
for effortless "point and click” travel through cyberspace. If you want to use programs such as
Mosaic and Netscape, you will need an up-to-date personal computer and a fast modem--the
faster the better--but most users find the rewards worth the extra investment.

What is Hypertext?

Hypertext is a powerful cross-referencing tool meant for user-driven access to an ocean wealth of
interconnected information either static or dynamic in an electronic format. Simply put,
hypertext may refer to plain simple text that contains links to access other chunks of text within
the same or different document. It provides a means to organize and present information in a way
that is easily accessible to the end users. It’s more like a user-driven tool to represent textual
information which are linked together to provide more flexibility and a greater degree of control.
This allows users or readers to move from one location to another via hyperlinks or “go to” links.
Links connect nodes to other documents and are usually activated when clicked upon by a mouse
or other pointing device.

What is Hypermedia?

Hypermedia is an extension of hypertext that employs multiple forms of media such as text,
graphics, audio or video sequences, still or moving graphics, etc. The structure of hypermedia is
quite similar to that of a hypertext, except it’s not constrained to be just text-based. It extends the
capabilities of hypertext systems by creating clickable links within web pages to create a network
of interconnected non-linear information which user can both access and interact with for a better
multimedia experience. The most common hypermedia type is image links which are often
linked to other web pages. It is used in a variety of applications from problem solving and
qualitative research to electronic studying and sophisticated learning.

Difference between Hypertext and Hypermedia
Definition

Hypertext simply refers to text that contains links to other chunks of text to which the user is
transferred to usually by a mouse click or keypress. The documents are linked together via
hyperlinks which allow users to jump from one document to another within the same or different
web pages. Hypermedia, on the other hand, is an extension of the term hypertext used in a
similar way except it’s not constrained to text elements. In fact, hypermedia contains different
media elements or morphologies such as audio, images, video, and still or moving graphics.

Representation

Hypertext is an interconnected network of documents and other media referenced through links
between them. It can contain either static or dynamic content in an electronic format. The static
content is the content that can be delivered directly to the end users without any modification
whereas dynamic content may subject to change based on user inputs. Hypermedia is the next
level of multimedia experience which extends the notion of hypertext links to include not only
text but a wide range of other multimedia elements such as audio, video, and graphics.

Technology

Although the term hypertext is widely used in association with the World Wide Web, the
technology has been around since ages. The hypertext technology is solely based on human-
computer interaction by strong cross referencing tools called hyperlinks. It facilitates effective
use of text and links and how to implement it on the World Wide Web. Hypermedia technology
is based on non-linear forms of media which include not only plain text but also other
multimedia elements to enhance your overall multimedia experience. Hypermedia technology is
a major breakthrough in the field of education.

HTTP - HyperText Transfer Protocol

HTTP means HyperText Transfer Protocol. HTTP is the underlying protocol used by the World
Wide Web and this protocol defines how messages are formatted and transmitted, and what
actions Web servers and browsers should take in response to various commands.

For example, when you enter a URL in your browser, this actually sends an HTTP command to
the Web server directing it to fetch and transmit the requested Web page. The other main
standard that controls how the World Wide Web works is HTML, which covers how Web pages
are formatted and displayed.

HTTP is a Stateless Protocol

HTTP is called a stateless protocol because each command is executed independently, without
any knowledge of the commands that came before it. This is the main reason that it is difficult to
implement Web sites that react intelligently to user input. This shortcoming of HTTP is being
addressed in a number of new technologies, including ActiveX, Java, JavaScript and cookies.

HTTP Status Codes are Error Messages

Errors on the Internet can be quite frustrating — especially if you do not know the difference
between a 404 error and a 502 error. These error messages, also called HTTP status codes are
response codes given by Web servers and help identify the cause of the problem.

For example, "404 File Not Found" is a common HTTP status code. It means the Web server
cannot find the file you requested. This means the webpage or other document you tried to load
in your Web browser has either been moved or deleted, or you entered the wrong URL or
document name.

https://www.webopedia.com/TERM/P/protocol.html
https://www.webopedia.com/TERM/W/World_Wide_Web.html
https://www.webopedia.com/TERM/W/World_Wide_Web.html
https://www.webopedia.com/TERM/W/Web_server.html
https://www.webopedia.com/TERM/B/browser.html
https://www.webopedia.com/TERM/U/URL.html
https://www.webopedia.com/TERM/W/web_page.html
https://www.webopedia.com/TERM/H/HTML.html
https://www.webopedia.com/TERM/S/stateless.html
https://www.webopedia.com/TERM/W/web_site.html
https://www.webopedia.com/TERM/A/ActiveX.html
https://www.webopedia.com/TERM/A/ActiveX.html
https://www.webopedia.com/TERM/J/JavaScript.html
https://www.webopedia.com/TERM/C/cookie.html

Knowing the meaning of the HTTP status code can help you figure out what went wrong. On a
404 error, for example, you could look at the URL to see if a word looks misspelled, then correct
it and try it again. If that doesn't work, backtrack by deleting information between each
backslash, until you come to a page on that site that isn't a 404. From there you may be able to
find the page you're looking for.

Additional information on HTTP error codes can be found in Webopedia's common HTTP status
codes article.

Custom 404 Error Pages

Many websites create custom 404 error pages that will help users locate a valid page or
document within the website. For example, if you land on a 404 File Not Found page via
Webopedia.com, a custom error page will load providing quick links to on-site navigation and
site search features to help you find what you were looking for.

What about HTTPS?

A similar abbreviation, HTTPS means Hyper Text Transfer Protocol Secure. Basically, it is the
secure version of HTTP. Communications between the browser and website are encrypted by
Transport Layer Security (TLS), or its predecessor, Secure Sockets Layer (SSL).

HTML

HTML (HyperText Markup Language) is the most basic building block of the Web. It defines the
meaning and structure of web content. Other technologies besides HTML are generally used to
describe a web page's appearance/presentation (CSS) or functionality/behavior (JavaScript).
"Hypertext" refers to links that connect web pages to one another, either within a single website or
between websites. Links are a fundamental aspect of the Web. By uploading content to the
Internet and linking it to pages created by other people, you become an active participant in the
World Wide Web.

HTML uses "markup™ to annotate text, images, and other content for display in a Web browser.
HTML markup includes special "elements™ such

as <head>, <title>, <body>, <header>, <footer>, <article>, <section>, <p>, <div>, , , <aside>, <audio>, <canvas>, <datalist>, <details>, <embed>, <nav>, <output>, <progress>, <v
ideo>, , , and many others.

An HTML element is set off from other text in a document by "tags", which consist of the
element name surrounded by "<" and ">". The name of an element inside a tag is case
insensitive. That is, it can be written in uppercase, lowercase, or a mixture. For example,

the <title> tag can be written as <Title>, <TITLE>, or in any other way.

URLs

https://www.webopedia.com/quick_ref/error.asp
https://www.webopedia.com/quick_ref/error.asp
https://www.webopedia.com/TERM/T/TLS.html
https://www.webopedia.com/TERM/S/SSL.html
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/head
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/title
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/title
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/header
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/footer
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/article
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/article
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/p
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/div
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/aside
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/aside
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/canvas
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/canvas
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/details
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/embed
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/embed
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/output
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/progress
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/ol
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/ol

What Is a URL?

If you've been surfing the Web, you have undoubtedly heard the term URL and have used URLs
to access HTML pages from the Web.

It's often easiest, although not entirely accurate, to think of a URL as the name of a file on the
World Wide Web because most URLSs refer to a file on some machine on the network. However,
remember that URLs also can point to other resources on the network, such as database queries
and command output.

Definition:

URL is an acronym for Uniform Resource Locator and is a reference (an address) to a resource
on the Internet.

A URL has two main components:

o Protocol identifier: For the URL http://example.com, the protocol identifier is http.
e Resource name: For the URL http://example.com, the resource name is example.com.

Note that the protocol identifier and the resource name are separated by a colon and two forward
slashes. The protocol identifier indicates the name of the protocol to be used to fetch the
resource. The example uses the Hypertext Transfer Protocol (HTTP), which is typically used to
serve up hypertext documents. HTTP is just one of many different protocols used to access
different types of resources on the net. Other protocols include File Transfer Protocol (FTP),
Gopher, File, and News.

The resource name is the complete address to the resource. The format of the resource name
depends entirely on the protocol used, but for many protocols, including HTTP, the resource
name contains one or more of the following components:

Host Name

The name of the machine on which the resource lives.
Filename

The pathname to the file on the machine.
Port Number

The port number to which to connect (typically optional).

http://example.com/
http://example.com/

Reference

A reference to a named anchor within a resource that usually identifies a specific location
within a file (typically optional).

For many protocols, the host name and the filename are required, while the port number and
reference are optional. For example, the resource name for an HTTP URL must specify a server
on the network (Host Name) and the path to the document on that machine (Filename); it also
can specify a port number and a reference.

Creating a URL

The easiest way to create a URL object is from a String that represents the human-readable form
of the URL address. This is typically the form that another person will use for a URL. In your
Java program, you can use a String containing this text to create a URL object:

URL myURL = new URL("http://example.com/");

The URL object created above represents an absolute URL. An absolute URL contains all of the
information necessary to reach the resource in question. You can also create URL objects from
a relative URL address.

Creating a URL Relative to Another

A relative URL contains only enough information to reach the resource relative to (or in the
context of) another URL.

Relative URL specifications are often used within HTML files. For example, suppose you write
an HTML file called JoesHomePage.html. Within this page, are links to other

pages, PicturesOfMe.html and MyKids.html, that are on the same machine and in the same
directory as JoesHomePage.html. The links

to PicturesOfMe.html and MyKids.html from JoesHomePage.html could be specified just as
filenames, like this:

Pictures of Me
Pictures of My Kids

These URL addresses are relative URLs. That is, the URLs are specified relative to the file in
which they are contained — JoesHomePage.html.

In your Java programs, you can create a URL object from a relative URL specification. For
example, suppose you know two URLSs at the site example.com:

http://example.com/pages/pagel.htmi
http://example.com/pages/page2.htmi

http://example.com/
http://example.com/pages/page1.html
http://example.com/pages/page2.html

You can create URL objects for these pages relative to their common base
URL.: http://example.com/pages/ like this:

URL myURL = new URL("http://example.com/pages/");
URL pagelURL = new URL(myURL, "pagel.html");
URL page2URL = new URL(myURL, "page2.html™);

This code snippet uses the URL constructor that lets you create a URL object from
another URL object (the base) and a relative URL specification. The general form of this
constructor is:

URL(URL baseURL, String relativeURL)

The first argument is a URL object that specifies the base of the new URL. The second argument
is a String that specifies the rest of the resource name relative to the base. If baseURL is null,
then this constructor treats relativeURL like an absolute URL specification. Conversely,
if relativeURL is an absolute URL specification, then the constructor ignores baseURL.

This constructor is also useful for creating URL objects for named anchors (also called
references) within a file. For example, suppose the pagel.html file has a named anchor

called BOTTOM at the bottom of the file. You can use the relative URL constructor to create

a URL object for it like this:

URL page1BottomURL = new URL (pagelURL,"#BOTTOM");

A media type (also known as a Multipurpose Internet Mail Extensions or MIME type) is a
standard that indicates the nature and format of a document, file, or assortment of bytes. It is
defined and standardized in IETF's RFC 6838.

The Internet Assigned Numbers Authority (IANA) is responsible for all official MIME types,
and you can find the most up-to-date and complete list at their Media Types page.

Structure of a MIME type

The simplest MIME type consists of a type and a subtype; these are each strings which, when
concatenated with a slash (/) between them, comprise a MIME type. No whitespace is allowed in
a MIME type:

type/subtype

The type represents the general category into which the data type falls, such as video or text.
The subtype identifies the exact kind of data of the specified type the MIME type represents. For
example, for the MIME type text, the subtype might be plain (plain text), html (HTML source
code), or calendar (for iCalendar/.ics) files.

http://example.com/pages/
http://example.com/pages/
https://tools.ietf.org/html/rfc6838
https://www.iana.org/
https://www.iana.org/assignments/media-types/media-types.xhtml
https://developer.mozilla.org/en-US/docs/Glossary/HTML

Each type has its own set of possible subtypes, and a MIME type always has both a type and a
subtype, never just one or the other.

An optional parameter can be added to provide additional details:

type/subtype;parameter=value

For example, for any MIME type whose main type is text, the optional charset parameter can be
used to specify the character set used for the characters in the data. If no charset is specified, the
default is ASCII (US-ASCII) unless overridden by the user agent's settings. To specify a UTF-8
text file, the MIME type text/plain;charset=UTF-8 is used.

MIME types are case-insensitive but are traditionally written in lowercase, with the exception of
parameter values, whose case may or may not have specific meaning.

Typ

There are two classes of type: discrete and multipart. Discrete types are types which representa
single file or medium, such as a single text or music file, or a single video. A multipart type is
one which represents a document that's comprised of multiple component parts, each of which
may have its own individual MIME type; or, a multipart type may encapsulate multiple files
being sent together in one transaction. For example, multipart MIME types are used when
attaching multiple files to an email.

Discrete types

The discrete types currently registered with the IANA are:

applicationList at IANA

Any kind of binary data that doesn't fall explicitly into one of the other types; either data
that will be executed or interpreted in some way or binary data that requires a specific
application or category of application to use. Generic binary data (or binary data whose
true type is unknown) is application/octet-stream. Other common examples

include application/pdf, application/pkcs8, and application/zip.

audioList at IANA
Audio or music data. Examples include audio/mpeg, audio/vorbis.
example

Reserved for use as a placeholder in examples showing how to use MIME types. These
should never be used outside of sample code listings and documentation. example can
also be used as a subtype; for instance, in an example related to working with audio on
the web, the MIME type audio/example can be used to indicate that the type is a

https://developer.mozilla.org/en-US/docs/Glossary/ASCII
https://developer.mozilla.org/en-US/docs/Glossary/user_agent
https://www.iana.org/assignments/media-types/media-types.xhtml#application
https://www.iana.org/assignments/media-types/media-types.xhtml#audio

placeholder and should be replaced with an appropriate one when using the code in the
real world.

fontList at IANA
Font/typeface data. Common examples include font/woff, font/ttf, and font/otf.
imageList at IANA

Image or graphical data including both bitmap and vector still images as well as animated
versions of still image formats such as animated GIF or APNG. Common examples
are image/jpeg, image/png, and image/svg+xml.

modelList at IANA
Model data for a 3D object or scene. Examples include model/3mf and model/vml.
textList at IANA

Text-only data including any human-readable content, source code, or textual data such
as comma-separated value (CSV) formatted data. Examples include text/plain, text/csv,
and text/ntml.

videoL.ist at IANA
Video data or files, such as MP4 movies (video/mp4).

For text documents without a specific subtype, text/plain should be used. Similarly, for binary
documents without a specific or known subtype, application/octet-stream should be used.

Multipart types

Multipart types indicate a category of document broken into pieces, often with different MIME
types; they can also be used — especially in email scenarios — to represent multiple, separate
files which are all part of the same transaction. They represent a composite document.

With the exception of multipart/form-data, used in the POST method of HTML Formes,

and multipart/byteranges, used with 206 Partial Content to send part of a document, HTTP
doesn't handle multipart documents in a special way: the message is transmitted to the browser
(which will likely show a "Save As" window if it doesn't know how to display the document).
There are two multipart types:

messageL.ist at IANA

A message that encapsulates other messages. This can be used, for instance, to represent
an email that includes a forwarded message as part of its data, or to allow sending very
large messages in chunks as if it were multiple messages. Examples

https://www.iana.org/assignments/media-types/media-types.xhtml#font
https://www.iana.org/assignments/media-types/media-types.xhtml#image
https://developer.mozilla.org/en-US/docs/Glossary/GIF
https://www.iana.org/assignments/media-types/media-types.xhtml#model
https://www.iana.org/assignments/media-types/media-types.xhtml#text
https://www.iana.org/assignments/media-types/media-types.xhtml#video
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Forms
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/206
https://www.iana.org/assignments/media-types/media-types.xhtml#message

include message/rfc822 (for forwarded or replied-to message quoting)
and message/partial to allow breaking a large message into smaller ones automatically to
be reassembled by the recipient.

multipartList at IANA

Data that is comprised of multiple components which may individually have different
MIME types. Examples include multipart/form-data (for data produced using

the FormData API) and multipart/byteranges (defined in RFC 7233: 5.4.1 and used
with HTTP's 206 "Partial Content" response returned when the fetched data is only part
of the content, such as is delivered using the Range header).

Working with Plug-Ins and Helper Applications

Many file types are available on the Internet. In addition to HTML, JSP, GIF, JPEG, and other
files that are used to present a Web page, there are graphics, movies, sounds, and many other file
types you can open and view. Internet Explorer can't work with all these file types directly, and
fortunately, it doesn't have to. Internet Explorer and other Web browsers use plug-ins and helper
applications to expand their capabilities so that they can work with files that they don't natively
support.

Working with Plug-Ins

Plug-ins are software that can be incorporated into a Web browser when it opens (thus, the
term plug-in). Internet plug-ins enable applications to display files that are of the specifictypes
handled by those plug-ins. For example, the QuickTime plug-in enables Web browsers to display
QuickTime movies.

Installing Internet Plug-Ins

As you travel around the Web, you might encounter file types for which you do not have the
required plug-in. In that case, you need to find and install the plug-in you need. Usually, sites
will have links to places from which you can download the plug-ins needed for the file types on
the site. There are a couple of places in the system where plug-ins can be stored.

Plug-ins that are available to all user accounts are stored in the folder Mac OS X/Library/Internet
Plug-Ins/, where Mac OS X is the name of your startup volume.

You must be logged in under an Administrator account to be able to store a plug-in in this
directory.

Internet plug-ins can also be stored in a specific user account, in which case they are available
only to that user. A user's specific plug-ins are in the location shortusername/Library/Internet
Plug-Ins/, where shortusername is the short name for the user account.

To install a plug-in, simply place it in the directory that is appropriate for that plug-in (to be
available either to all users or to only a specific user). Quit the Web browser and then launch it
again to make the plug-in active.

NOTE

https://www.iana.org/assignments/media-types/media-types.xhtml#multipart
https://developer.mozilla.org/en-US/docs/Web/API/FormData
https://tools.ietf.org/html/rfc7233
https://developer.mozilla.org/en-US/docs/Glossary/HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/206
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Range

Some plug-ins are installed using an installer application, in which case you don't need to install
the plug-in manually.

If you open the Internet Plug-Ins directories, you will see the plug-ins that are currently installed.
Any plug-in installed in this folder can be used by a supported Web browser.

Many plug-ins are available for Web browsers. The QuickTime plug-in is installed by default so
that you can view QuickTime movies in Web browsers. Additionally, the Shockwave Flash plug-
in is installed by default as is the Java Applet plug-in. There are many other plug-ins you might
want to download and install.

When you attempt to view a file for which you do not have the appropriate plug-in, you will see
a warning dialog box that tells you what to do. Usually, you see instructions to help you find,
download, and install the plug-in as well.

Using Internet Plug-Ins

After a plug-in is installed in the appropriate folder, it works with a Web browser to provide its
capabilities. When you click a file that requires the plug-in to be used, the appropriate plug-in
activates and enables you to do whatever it is designed to do. For example, when you open a
QuickTime movie, you see the controls that enable you to watch that movie within the Web
browser.

Working with Helper Applications

Although plug-ins provide additional capability by "plugging in" to a Web browser, helper
applications are standalone applications that Web browsers can use to work with files of specific
types. Any application on your Mac can be used as a helper application.

Web browsers maintain a list of document types for which helper applications should be used.
When you open a file type that has a helper application, that application opens and you can use it
to work with a file. Web browsers have a default helper application list that links helper
applications to many different document types. You can add, change, or delete file types and
applications from this list.

For example, in the previous section, you learned how Stufflt Expander can decode and
uncompress files you download from the Internet. Stufflt Expander is a helper application; as
you saw earlier, you can also use the application independently of a browser. When a browser
opens a file type for which Stufflt Expander is the designated helper application, the browser
opens Stufflt Expander and "passes" the file to it for processing.

Using Helper Applications

Using helper applications is just like using those applications as standalone applications (after
the browser opens the application and passes a file to it). For example, suppose that the
application Microsoft Word is the designated helper application for files with the .doc file
extension. When you click a file whose name ends in .doc, the browser launches Word and
passes the document file to it. The document opens in Word and you can work with it just as you
can any other Word document.

Configuring Helper Applications in Internet Explorer

Using helper applications is simple, but determining which helper applications are used can be a
bit more difficult. You need to be able to relate specific file extensions to the application you
want to use as the helper application for that file type.

The best way to see how this works is to work through an example. In this example, the
application Stufflt Expander will be designated as the helper application for Zip files you
download. This means that when you download a Zip file, Stufflt Expander will be opened and
will unzip the file automatically.

NOTE

By default, Internet Explorer already uses Stufflt Expander as the file helper associated with Zip
files. However, this example provides steps that are typical when you need to associate a file
with a file helper and so is a worthwhile exercise.

1. Open the Internet Explorer Preferences window and click File Helpers to open the File
Helpers Settings pane. This pane provides a list of applications along with their
descriptions. Next to each, you will see the filename extension and MIME file type of the
files for which that application is the helper.

2. Click Add and the Edit File Helper window opens. This window provides the controls
and fields you need to designate a helper application for any file type. The window will
be empty when you create an association.

3. Describe the association you are creating.
In the example, I used "Zip files.”

4. Press Tab and enter the extension for the file type for which you are creating an
association.

In this example, | entered ".zip" as the extension.
5. In the MIME type field, enter application/zip.

6. Enter the four-letter file type and creator codes for the files you will be associating with
this application.

In the example, | entered "ZIP ™ in both places (the letters "ZIP" followed by a space).
NOTE

Explaining MIME, file types, and file creators is beyond what I have room to cover here.
Usually, you can find what you need to enter by looking at one of the existing
associations. In fact, that will often work for any new association you want to create. Use
the existing associations as guides.

7. Using the How to Handle pop-up menu, choose how you want these files to be handled.

Because | want the files to be processed with the application (rather than being viewed,
for example), | chose Post-Process with Application.

8.

XML

Use the Open dialog box to choose the application that you want to be the helper
application for files of this type.

In the example, | selected Stufflt Expander.

Click OK to return to the File Helper Settings pane and you will see your new association
in the window.

XML stands for Extensible Markup Language. It is a text-based markup language derived from
Standard Generalized Markup Language (SGML).

XML tags identify the data and are used to store and organize the data, rather than specifying
how to display it like HTML tags, which are used to display the data. XML is not going to
replace HTML in the near future, but it introduces new possibilities by adopting many
successful features of HTML.

There are three important characteristics of XML that make it useful in a variety of systems and
solutions —

XML is extensible — XML allows you to create your own self-descriptive tags, or
language, that suits your application.

XML carries the data, does not present it — XML allows you to store the data
irrespective of how it will be presented.

XML is a public standard — XML was developed by an organization called the World
Wide Web Consortium (W3C) and is available as an open standard.

XML Usage

A short list of XML usage says itall —

XML can work behind the scene to simplify the creation of HTML documents for large
web sites.

XML can be used to exchange the information between organizations and systems.
XML can be used for offloading and reloading of databases.

XML can be used to store and arrange the data, which can customize your data handling
needs.

XML can easily be merged with style sheets to create almost any desired output.

Virtually, any type of data can be expressed as an XML document.

What is Markup?

XML is a markup language that defines set of rules for encoding documents in a format that is
both human-readable and machine-readable. So what exactly is a markup language? Markup is

information added to a document that enhances its meaning in certain ways, in that it identifies
the parts and how they relate to each other. More specifically, a markup language is a set of
symbols that can be placed in the text of a document to demarcate and label the parts of that
document.

Following example shows how XML markup looks, when embedded in a piece of text —

<message>
<text>Hello, world!</text>
</message>

This snippet includes the markup symbols, or the tags such as <message>...</message> and
<text>... </text>. The tags <message> and </message> mark the start and the end of the XML
code fragment. The tags <text> and </text> surround the text Hello, world!.

Is XML a Programming Language?

A programming language consists of grammar rules and its own vocabulary which is used to
create computer programs. These programs instruct the computer to perform specific tasks.
XML does not qualify to be a programming language as it does not perform any computation or
algorithms. It is usually stored in a simple text file and is processed by special software that is
capable of interpreting XML.

XHTML - Introduction

XHTML stands for EXtensible HyperText Markup Language. It is the next step in the
evolution of the internet. The XHTML 1.0 is the first document type in the XHTML family.

XHTML is almost identical to HTML 4.01 with only few differences. This is a cleaner and
stricter version of HTML 4.01. If you already know HTML, then you need to give little
attention to learn this latest version of HTML.

XHTML was developed by World Wide Web Consortium (W3C) to help web developers make
the transition from HTML to XML. By migrating to XHTML today, web developers can enter
the XML world with all of its benefits, while still remaining confident in the backward and
future compatibility of the content.

Why Use XHTML?

Developers who migrate their content to XHTML 1.0 get the following benefits —

e XHTML documents are XML conforming as they are readily viewed, edited, and
validated with standard XML tools.

e« XHTML documents can be written to operate better than they did before in existing
browsers as well as in new browsers.

« XHTML documents can utilize applications such as scripts and applets that rely upon
either the HTML Document Object Model or the XML Document Object Model.

« XHTML gives you a more consistent, well-structured format so that your webpages can
be easily parsed and processed by present and future web browsers.

e You can easily maintain, edit, convert and format your document in the long run.

e Since XHTML is an official standard of the W3C, your website becomes more
compatible with many browsers and it is rendered more accurately.

e XHTML combines strength of HTML and XML. Also, XHTML pages can be rendered
by all XML enabled browsers.

o XHTML defines quality standard for your webpages and if you follow that, then your
web pages are counted as quality web pages. The W3C certifies those pages with their
quality stamp.

Web developers and web browser designers are constantly discovering new ways to express
their ideas through new markup languages. In XML, it is relatively easy to introduce new
elements or additional element attributes. The XHTML family is designed to accommodate
these extensions through XHTML modules and techniques for developing new XHTML-
conforming modules. These modules permit the combination of existing and new features at the
time of developing content and designing new user agents.

Basic Understanding

Before we proceed further, let us have a quick view on what are HTML, XML, and SGML.

What is SGML?

This is Standard Generalized Markup Language (SGML) application conforming to
International Standard ISO 8879. HTML is widely regarded as the standard publishing language
of the World Wide Web.

This is a language for describing markup languages, particularly those used in electronic
document exchange, document management, and document publishing. HTML is an example of
a language defined in SGML.

What is XML?

XML stands for EXtensible Markup Language. XML is a markup language much like HTML
and it was designed to describe data. XML tags are not predefined. You must define your own
tags according to your needs.

XHTML - Syntax

XHTML syntax is very similar to HTML syntax and almost all the valid HTML elements are
valid in XHTML as well. But when you write an XHTML document, you need to pay a bit
extra attention to make your HTML document compliant to XHTML.

Here are the important points to remember while writing a new XHTML document or
converting existing HTML document into XHTML document —

o Write a DOCTYPE declaration at the start of the XHTML document.

o Write all XHTML tags and attributes in lower case only.
e Close all XHTML tags properly.

o Nest all the tags properly.

e Quote all the attribute values.

o Forbid Attribute minimization.

o Replace the name attribute with the id attribute.

o Deprecate the language attribute of the script tag.

Here is the detail explanation of the above XHTML rules —
DOCTYPE Declaration

All XHTML documents must have a DOCTYPE declaration at the start. There are three types
of DOCTYPE declarations, which are discussed in detail in XHTML Doctypes chapter. Here is
an example of using DOCTYPE —

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional/EN"
"http://wvww.w3.0rg/ TR/xhtml1/DTD/xhtml1-transitional.dtd">

Case Sensitivity

XHTML is case sensitive markup language. All the XHTML tags and attributes need to be
written in lower case only.

<I-- This is invalid in XHTML -->
XHTML Tutorial

<!I-- Correct XHTML way of writing this is as follows -->
XHTML Tutorial

In the example, Href and anchor tag A are not in lower case, so it is incorrect.
Closing the Tags

Each and every XHTML tag should have an equivalent closing tag, even empty elements should
also have closing tags. Here is an example showing valid and invalid ways of using tags —

<I-- This is invalid in XHTML -->
<p>This paragraph is not written according to XHTML syntax.

<I-- This is also invalid in XHTML -->

The following syntax shows the correct way of writing above tags in XHTML. Difference is
that, here we have closed both the tags properly.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

<!-- This is valid in XHTML -->
<p>This paragraph is not written according to XHTML syntax.</p>

<!-- This is also valid now -->

Attribute Quotes

All the values of XHTML attributes must be quoted. Otherwise, your XHTML document is
assumed as an invalid document. Here is the example showing syntax —

<!I-- This is invalid in XHTML -->

<I-- Correct XHTML way of writing this is as follows -->

Attribute Minimization

XHTML does not allow attribute minimization. It means you need to explicitly state the
attribute and its value. The following example shows the difference —

<I-- This is invalid in XHTML -->
<option selected>

<!I-- Correct XHTML way of writing this is as follows -->
<option selected="selected">

Here is a list of the minimized attributes in HTML and the way you need to write them in
XHTML —

HTML Style XHTML Style
Compact compact="compact"
Checked checked="checked"
Declare declare="declare"
Readonly readonly="readonly"

Disabled disabled="disabled"

Selected selected="selected"

Defer defer="defer"

Ismap ismap="ismap"
Nohref nohref="nohref"
Noshade noshade="noshade"
Nowrap nowrap="nowrap"
Multiple multiple="multiple"
Noresize noresize="noresize"

The id Attribute

The id attribute replaces the name attribute. Instead of using name = "name", XHTML prefers
to use id = "id". The following example shows how —

<!I-- This is invalid in XHTML -->

<I-- Correct XHTML way of writing this is as follows -->

The language Attribute

The language attribute of the script tag is deprecated. The following example shows this
difference —

<I-- This is invalid in XHTML -->

<script language="JavaScript" type="text/JavaScript">
document.write("Hello XHTML!");

</script>

<I-- Correct XHTML way of writing this is as follows -->

<script type="text/JavaScript">
document.write("Hello XHTML!");
</script>

Nested Tags

You must nest all the XHTML tags properly. Otherwise your document is assumed as an
incorrect XHTML document. The following example shows the syntax —

<l-- This is invalid in XHTML -->
<i> This text is bold and italic</i>

<!I-- Correct XHTML way of writing this is as follows -->
<i> This text is bold and italic</i>

Element Prohibitions

The following elements are not allowed to have any other element inside them. This prohibition
applies to all depths of nesting. Means, it includes all the descending elements.

Element Prohibition

<a> Must not contain other <a> elements.

<pre> Must not contain the , <object>, <big>, <small>, <sub>, or <sup>
elements.

<button> Must not contain the <input>, <select>, <textarea>, <label>, <button>,
<form>, <fieldset>, <iframe> or <isindex> elements.

<label> Must not contain other <label> elements.

<form> Must not contain other <form> elements.

A Minimal XHTML Document

The following example shows you a minimum content of an XHTML 1.0 document —

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://wvww.w3.0rg/ TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlIns="http://www.w3.0rg/TR/xhtmI1" xml:lang="en" lang="en">
<head>

<title>Every document must have a title</title>
</head>

<body>

...your content goes here...
</body>
</html>

HTML Versus XHTML

Due to the fact that XHTML is an XML application, certain practices that were perfectly legal
in SGML-based HTML 4 must be changed. You already have seen XHTML syntax in previous

chapter, so differences between XHTML and HTML are very obvious. Following is the
comparison between XHTML and HTML.

XHTML Documents Must be Well-Formed

Well-formedness is a new concept introduced by XML. Essentially, this means all the elements
must have closing tags and you must nest them properly.

CORRECT: Nested Elements

'<p>Here is an emphasized paragraph.</p> |
INCORRECT: Overlapping Elements

\<p>Here is an emphasized paragraph.</p>

Elements and Attributes Must be in Lower Case

XHTML documents must use lower case for all HTML elements and attribute names. This
difference is necessary because XHTML document is assumed to be an XML document and
XML is case-sensitive. For example, and are different tags.

End Tags are Required for all Elements

In HTML, certain elements are permitted to omit the end tag. But XML does not allow end tags
to be omitted.

CORRECT: Terminated Elements

<p>Here is a paragraph.</p><p>here is another paragraph.</p>

<hr/>

INCORRECT: Unterminated Elements

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1

<p>Here is a paragraph.<p>here is another paragraph.

<hr>

Attribute Values Must Always be Quoted

All attribute values including numeric values, must be quoted.

CORRECT: Quoted Attribute Values

\<td rowspan="3">
INCORRECT: Unquoted Attribute Values

<td rowspan=3>

Attribute Minimization

XML does not support attribute minimization. Attribute-value pairs must be written in full.
Attribute names such as compact and checked cannot occur in elements without their value

being specified.
CORRECT: Non Minimized Attributes

<dI compact="compact">
INCORRECT: Minimized Attributes

\<d| compact>

Whitespace Handling in Attribute Values

When a browser processes attributes, it does the following —

 Strips leading and trailing whitespace.

« Maps sequences of one or more white space characters (including line breaks) to a single
inter-word space.

Script and Style Elements

In XHTML, the script and style elements should not have “<” and “&” characters directly, if
they exist; then they are treated as the start of markup. The entities such as “<” and “&” are
recognized as entity references by the XML processor for displaying “<” and “&” characters

respectively.
Wrapping the content of the script or style element within a CDATA marked section avoids the
expansion of these entities.

<script type="text/JavaScript">
<I[CDATA[
... unescaped VB or Java Script here... ...

11>

</script>
An alternative is to use external script and style documents.

The Elements with id and name Attributes

XHTML recommends the replacement of name attribute with id attribute. Note that in XHTML
1.0, the name attribute of these elements is formally deprecated, and it will be removed in a
subsequent versions of XHTML.

Attributes with Pre-defined Value Sets

HTML and XHTML both have some attributes that have pre-defined and limited sets of values.
For example, type attribute of the input element. In HTML and XML, these are
called enumerated attributes. Under HTML 4, the interpretation of these values was case-
insensitive, so a value of TEXT was equivalent to a value of text.

Under XHTML, the interpretation of these values is case-sensitive so all of these values are
defined in lower-case.

Entity References as Hex Values

HTML and XML both permit references to characters by using hexadecimal value. In HTML
these references could be made using either &#Xnn; or &#xnn; and they are valid but in
XHTML documents, you must use the lower-case version only such as &#xnn;.

The <htmI> Element is a Must

All XHTML elements must be nested within the <html> root element. All other elements can
have sub elements which must be in pairs and correctly nested within their parent element. The
basic document structure is —

<IDOCTYPE html| >

<html>
<head> ... </head>
<body> ... </body>
</html>

XHTML - Doctypes

The XHTML standard defines three Document Type Definitions (DTDs). The most commonly
used and easy one is the XHTML Transitional document.

XHTML 1.0 document type definitions correspond to three DTDs —

e Strict
e Transitional

e Frameset

There are few XHTML elements and attributes, which are available in one DTD but not
available in another DTD. Therefore, while writing your XHTML document, you must select
your XHTML elements or attributes carefully. However, XHTML validator helps you to
identify valid and invalid elements and attributes.

Please check XHTML Validations for more detail on this.

XHTML 1.0 Strict

If you are planning to use Cascading Style Sheet (CSS) strictly and avoiding to write most of
the XHTML attributes, then it is recommended to use this DTD. A document conforming to this

DTD is of the best quality.

If you want to use XHTML 1.0 Strict DTD then you need to include the following line at the
top of your XHTML document.

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmI1/DTD/xhtml1-strict.dtd">

XHTML 1.0 Transitional

If you are planning to use many XHTML attributes as well as few Cascading Style Sheet
properties, then you should adopt this DTD and you should write your XHTML document

accordingly.

If you want to use XHTML 1.0 Transitional DTD, then you need to include the following line at
the top of your XHTML document.

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://wvww.w3.0rg/ TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 Frameset

You can use this when you want to use HTML Frames to partition the browser window into two
or more frames.

If you want to use XHTML 1.0 Frameset DTD, then you need to include following line at the
top of your XHTML document.

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.0rg/TR/xhtmI1/DTD/xhtml1-frameset.dtd">

Note — No matter what DTD you are using to write your XHTML document; if it is a valid
XHTML document, then your document is considered as a good quality document.

XHTML - Attributes

There are a few XHTML/HTML attributes which are standard and associated to all the
XHTML/HTML tags. These attributes are listed here with brief description —

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd
https://www.tutorialspoint.com/xhtml/xhtml_validations.htm

Core Attributes

Not valid in base, head, html, meta, param, script, style, and title elements.

Attribute Value Description
Class class_rule or style rule The class of the element.
Id id_name A unique id for the element.
Style style_definition An inline style definition.
Title tooltip_text A text to display in a mouse tip.

Language Attributes

The lang attribute indicates the language being used for the enclosed content. The language is
identified using the 1SO standard language abbreviations, such as fr for French, en for English,
and so on. More codes and their formats are described at www.ietf.org.

Not valid in base, br, frame, frameset, hr, iframe, param, and script elements.

Attribute Value Description
Dir Itr | rtl Sets the text direction.
Lang language_code Sets the language code.

Microsoft Proprietary Attributes

Microsoft introduced a number of new proprietary attributes with the Internet Explorer 4 and
higher versions.

Attribute Value Description

accesskey Character Sets a keyboard shortcut to access an element.

http://www.ietf.org/rfc/rfc1766.txt

language String This attribute specifies the scripting language to be
used with an associated script bound to the element,
typically through an event handler attribute. Possible
values might include JavaScript, jScript, VBS, and
VBScript.

tabindex Number Sets the tab order of an element.

contenteditable Boolean Allows users to edit content rendered in Internet
Explorer 5.5 or greater. Possible values are true or
false.

disabled Boolean Elements with the disabled attribute set may appear
faded and will not respond to user input. Possible
values are true or false.

hidefocus onoroff This proprietary attribute, introduced with Internet
Explorer 5.5, hides focus on an element's content.
Focus must be applied to the element using the
tabindex attribute.

unselectable onor off Used to prevent content displayed in Internet Explorer
5.5 from being selected.

XHTML - Events

When users visit a website, they do things such as click on text, images and hyperlinks, hover-
over things, etc. These are examples of what JavaScript calls events.

We can write our event handlers in JavaScript or VBScript and can specify these event handlers
as a value of event tag attribute. The XHTML 1.0 has a similar set of events which is available
in HTML 4.01 specification.

The <body> and <frameset> Level Events

There are only two attributes which can be used to trigger any JavaScript or VBScript code,
when any event occurs at document level.

Attribute Value Description

Onload Script Script runs when a XHTML document loads.

onunload Script Script runs when a XHTML document unloads.

Note — Here, the script refers to any function or piece of code of VBScript or JavaScript.
The <form> Level Events

There are following six attributes which can be used to trigger any JavaScript or VBScript code
when any event occurs at form level.

Attribute Value Description
onchange Script Script executes when the element changes.
onsubmit Script Script executes when the form is submitted.
Onreset Script Script executes when the form is reset.
onselect Script Script executes when the element is selected.
Onblur Script Script executes when the element loses focus.
onfocus Script Script runs when the element gets focus.

Keyboard Events

The following three events are generated by keyboard. These events are not valid in base, bdo,
br, frame, frameset, head, html, iframe, meta, param, script, style, and title elements.

Attribute Value Description

onkeydown Script Script executes on key press.

onkeypress Script Script executes on key press and release.

onkeyup Script Script executes key release.

Other Events

The following seven events are generated by mouse when it comes in contact with any HTML
tag. These events are not valid in base, bdo, br, frame, frameset, head, html, iframe, meta,
param, script, style, and title elements.

Attribute Value Description
Onclick Script Script executes on a mouse click.
ondblclick Script Script executes on a mouse double-click.

onmousedown Script Script executes when mouse button is pressed.

onmousemove Script Script executes when mouse pointer moves.

onmouseout Script Script executes when mouse pointer moves out of an
element.

onmouseover Script Script executes when mouse pointer moves over an
element.

onmouseup Script Script executes when mouse button is released.

XHTML - Version 1.1

The W3C has helped move the internet content-development community from the days of
malformed, non-standard mark-up into the well-formed, valid world of XML. In XHTML 1.0,
this move was moderated by the goal of providing easy migration of existing HTML 4 (or
earlier) based content to XHTML and XML.

The W3C has removed support for deprecated elements and attributes from the XHTML family.
These elements and attributes had largely presentation-oriented functionality that is better
handled via style sheets or client-specific default behavior.

Now the W3C's HTML Working Group has defined an initial document type based solely upon
modules which are XHTML 1.1. This document type is designed to be portable to a broad
collection of client devices, and applicable to the majority of internet content.

Document Conformance

The XHTML 1.1 provides a definition of strictly conforming XHTML documents which MUST
meet all the following criteria —

e The document MUST conform to the constraints expressed in XHTML 1.1 Document
Type Definition.

e The root element of the document MUST be <html>.

e The root element of the document MUST designate the XHTML namespace using
the xmlns attribute.

e The root element MAY also contain a schema location attribute as defined in the XML
Schema.

There MUST be a DOCTYPE declaration in the document prior to the root element. If it is
present, the public identifier included in the DOCTYPE declaration MUST refer the DTD found
in XHTML 1.1 Document Type Definition.

Here is an example of an XHTML 1.1 document —

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtm|11.dtd">

<html xmIns="http://www.w3.0rg/1999/xhtmI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd" xml:lang="en">

<head>
<title>This is the document title</title>
</head>

<body>
<p>Moved to example.org.</p>
</body>

</html>

Note — In this example, the XML declaration is included. An XML declaration such as the one
above is not required in all XML documents. XHTML document authors are strongly
encouraged to use XML declarations in all their documents. Such a declaration is required when
the character encoding of the document is other than the default UTF-8 or UTF-16.

XHTML 1.1 Modules

The XHTML 1.1 document type is made up of the following XHTML modules.

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd
http://example.org/

Structure Module — The Structure Module defines the major structural elements for XHTML.
These elements effectively act as the basis for the content model of many XHTML family
document types. The elements and attributes included in this module are — body, head, html,
and title.

Text Module — This module defines all ofthe basic text container elements, attributes, and their
content model — abbr, acronym, address, blockquote, br, cite, code, dfn, div, em, h1, h2, h3, h4,
h5, h6, kbd, p, pre, g, samp, span, strong, and var.

Hypertext Module — The Hypertext Module provides the element that is used to define
hypertext links to other resources. This module supports element a.

List Module — As its name suggests, the List Module provides list-oriented elements.
Specifically, the List Module supports the following elements and attributes — dl, dt, dd, ol, ul,
and li.

Object Module — The Object Module provides elements for general-purpose object inclusion.
Specifically, the Object Module supports — object and param.

Presentation Module — This module defines elements, attributes, and a minimal content model
for simple presentation-related markup — b, big, hr, i, small, sub, sup, and tt.

Edit Module — This module defines elements and attributes for use in editing-related markup —
del and ins.

Bidirectional Text Module — The Bi-directional Text module defines an element that can be
used to declare the bi-directional rules for the element's content — bdo.

Forms Module — It provides all the form features found in HTML 4.0. Specifically, it supports
— button, fieldset, form, input, label, legend, select, optgroup, option, and textarea.

Table Module — It supports the following elements, attributes, and content model — caption,
col, colgroup, table, tbody, td, tfoot, th, thead, and tr.

Image Module — It provides basic image embedding and may be used in some implementations
of client side image maps independently. It supports the element — img.

Client-side Image Map Module — It provides elements for client side image maps — area and
map.

Server-side Image Map Module — It provides support for image-selection and transmission of
selection coordinates. The Server-side Image Map Module supports — attribute ismap on img.

Intrinsic Events Module — It supports all the events discussed in XHTML Events.

Meta information Module — The Meta information Module defines an element that describes
information within the declarative portion of a document. It includes element meta.

Scripting Module — It defines the elements used to contain information pertaining to
executable scripts or the lack of support for executable scripts. Elements and attributes included
in this module are — noscript and script.

Style Sheet Module — It defines an element to be used when declaring internal style sheets. The
element and attribute defined by this module is — style.

Style Attribute Module (Deprecated) — It defines the style attribute.

Link Module — It defines an element that can be used to define links to external resources. It
supports link element.

Base Module — It defines an element that can be used to define a base URI against which
relative URIs in the document are resolved. The element and attribute included in this module is
— base.

Ruby Annotation Module — XHTML also uses the Ruby Annotation module as defined in
RUBY and supports — ruby, rbc, rtc, rb, rt, and rp.
Changes from XHTML 1.0 Strict
This section describes the differences between XHTML 1.1 and XHTML 1.0 Strict. XHTML
1.1 represents a departure from both HTML 4 and XHTML 1.0.

e The most significant is the removal of features that were deprecated.

e The changes can be summarized as follows —

« On every element, the lang attribute has been removed in favor of the xml:lang attribute.

e On the <a> and <map> elements, the name attribute has been removed in favor of the id
attribute.

o The ruby collection of elements has been added.

XHTML - Tips & Tricks

This chapter lists out various tips and tricks which you should be aware of while writing an
XHTML document. These tips and tricks can help you create effective documents.

Tips for Designing XHTML Document

Here are some basic guidelines for designing XHTML documents —
Design for Serving and Engaging Your Audience

When you think of satisfying what your audience wants, you need to design effective and
catchy documents to serve the purpose. Your document should be easy for finding required
information and giving a familiar environment.

For example, Academicians or medical practitioners are comfortable with journal-like
document with long sentences, complex diagrams, specific terminologies, etc., whereas the
document accessed by school-going children must be simple and informative.

Reuse Your Document

Reuse your previously created successful documents instead of starting from scratch each time
you bag a new project.

Inside the XHTML Document

Here are some tips regarding elements inside the XHTML document —

The XML Declaration

An XML declaration is not required in all XHTML documents but XHTML document authors
are strongly encouraged to use XML declarations in all their documents. Such a declaration is
required when the character encoding of the document is other than the default UTF-8 or UTF-
16.

Empty Elements

They include a space before the trailing / and > of empty elements. For example,
, <hr />,
and .

Embedded Style Sheets and Scripts

b

Use external style sheets if your style sheet uses “<”, “&”, “1]>”, or “—"".

b

Use external scripts if your script uses “<”, “&”, or “]]>”, or “—"".

Line Breaks within Attribute Values

Avoid line breaks and multiple whitespace characters within attribute values. These are handled
inconsistently by different browsers.

Isindex Element

Do not include more than one isindex element in the document head. The isindex element is
deprecated in favor of the input element.

The lang and xml:lang Attributes

Use both the lang and xml:lang attributes while specifying the language of an element. The
value of the xml:lang attribute takes precedence.

Element Identifiers

XHTML 1.0 has deprecated the name attributes of a, applet, form, frame, iframe,
img, and map elements. They will be removed from XHTML in subsequent versions. Therefore,
start using id element for element identification.

Using Ampersands in Attribute Values

The ampersand character ("&") should be presented as an entity reference &.

Example

<I-- This is invalid in XHTML -->
http://my.site.dom/cgi-bin/myscript.pl?class=guest&name=user.

<I-- Correct XHTML way of writing this is as follows -->
http://my.site.dom/cgi-bin/myscript.pl?class=guest&name=user

http://my.site.dom/cgi-bin/myscript.pl?class=guest&name=user
http://my.site.dom/cgi-bin/myscript.pl?class=guest&name=user
http://my.site.dom/cgi-bin/myscript.pl?class=guest&name=user

Whitespace Characters in HTML and XML

Some characters that are legal in HTML documents are illegal in XML document. For example,
in HTML, the form-feed character (U+000C) is treated as white space, in XHTML, due to
XML's definition of characters, it is illegal.

Named Character Reference &Apos;

The named character reference ' (the apostrophe, U+0027) was introduced in XML 1.0 but does
not appear in HTML. Web developers should therefore use ' instead of ' to work as
expected in HTML 4 Web Browsers.

XHTML - Validations

Every XHTML document is validated against a Document Type Definition. Before validating
an XHTML file properly, a correct DTD must be added as the first or second line of the file.

Once you are ready to validate your XHTML document, you can use W3C Validator to validate
your document. This tool is very handy and helps you to fix the problems with your document.
This tool does not require any expertise to perform validation.

The following statement in the text box shows you details. You need to give complete URL of
the page, which you want to validate and then click Validate Page button.

Input your page address in the box below —

| http://w w w .tutorialspoint.com/xhtml/index.htm

Validate Page

This validator checks the markup validity of web documents with various formats especially in
HTML, XHTML, SMIL, MathML, etc.

There are other tools to perform different other validations.
o RSS/Atom feeds Validator
e CSS stylesheets Validator
o Find Broken Links

o Other validators and tools

W3C

The W3C DOM standardizes most of the features of the legacy DOM and adds new ones as
well. In addition to supporting forms|[], images|[], and other array properties of the Document
object, it defines methods that allow scripts to access and manipulate any document element and
not just special-purpose elements like forms and images.

Document Properties in W3C DOM

http://w/
http://validator.w3.org/docs/help.html#validation_basics
http://validator.w3.org/feed/
http://jigsaw.w3.org/css-validator/
http://validator.w3.org/checklink
http://www.w3.org/QA/Tools/

This model supports all the properties available in Legacy DOM. Additionally, here is a list of
document properties which can be accessed using W3C DOM.

Sr.No. Property & Description

! body
A reference to the Element object that represents the <body> tag of this
document.

EX — document.body

defaultView

Its Read-only property and represents the window in which the document
is displayed.

EX — document.defaultView

documentElement
A read-only reference to the <html> tag of the document.

EXx — document.documentElement8/31/2008

implementation

It is a read-only property and represents the DOMImplementation object
that represents the implementation that created this document.

EX — document.implementation

Document Methods in W3C DOM

This model supports all the methods available in Legacy DOM. Additionally, here is a list of
methods supported by W3C DOM.

Sr.No. Property & Description

createAttribute(name)
Returns a newly-created Attr node with the specified name.

EX — document.create Attribute(name)

createComment(text)
Creates and returns a new Comment node containing the specified text.

EX — document.createComment(text)

createDocumentFragment()
Creates and returns an empty DocumentFragment node.

EX — document.createDocumentFragment()

createElement(tagName)
Creates and returns a new Element node with the specified tag name.

EX — document.createElement(tagName)

createTextNode(text)
Creates and returns a new Text node that contains the specified text.

EX — document.createTextNode(text)

getElementByld(id)

Returns the Element of this document that has the specified value for its
id attribute, or null if no such Element exists in the document.

EXx — document.getElementByld(id)

getElementsByName(name)

Returns an array of nodes of all elements in the document that have a
specified value for their name attribute. If no such elements are found,
returns a zero-length array.

EX — document.getElementsByName(name)

getElementsByTagName(tagname)

Returns an array of all Element nodes in this document that have the
specified tag name. The Element nodes appear in the returned array in the
same order they appear in the document source.

EX — document.getElementsByTagName(tagname)

importNode(importedNode, deep)

Creates and returns a copy of a node from some other document that is
suitable for insertion into this document. If the deep argument is true, it
recursively copies the children of the node too. Supported in DOM
Version 2

EX — document.importNode(importedNode, deep)

Example

This is very easy to manipulate (Accessing and Setting) document element using W3C DOM.
You can use any of the methods like getElementByld, getElementsByName,
or getElementsByTagName.

Here is an example to access document properties using W3C DOM method.

Live Demo

<html>
<head>
<title> Document Title </title>
<script type = "text/javascript">
<l--
function myFunc() {
var ret = document.getElementsByTagName("title™);
alert("Document Title : " + ret[0].text);

var ret = document.getElementByld("heading");
alert(ret.innerHTML);
}
I-->
</script>
</head>
<body>
<hl id = "heading">This is main title</h1>
<p>Click the following to see the result:</p>

<form id = "form1" name = "FirstForm">
<input type = "button" value = "Click Me" onclick = "myFunc();" />
<input type = "button” value = "Cancel">

</form>

<form d = "form2" name = "SecondForm">
<input type = "button" value = "Don't ClickMe"/>
</form>
</body>

http://tpcg.io/jEXp5C

</html>

Anatomy of HTML document

HTML stands for Hyper Text Markup Language. It is a formatting language used to define
the appearance and contents of a web page. It allows us to organize text, graphics, audio, and
video on a web page.

Key Points:
o The word Hypertext refers to the text which acts as a link.

e The word markup refers to the symbols that are used to define structure of the text. The
markup symbols tells the browser how to display the text and are often called tags.

« The word Language refers to the syntax that is similar to any other language.
HTML was created by Tim Berners-Lee at CERN.

HTML Versions

The following table shows the various versions of HTML.:

Version Year
HTML 1.0 1991
HTML 2.0 1995
HTML 3.2 1997
HTML 4.0 1999

XHTML 2000

HTMLS 2012

HTML Tags
Tag is a command that tells the web browser how to display the text, audio, graphics or video
on a web page.
Key Points:
o Tags are indicated with pair of angle brackets.
o They start with a less than (<) character and end with a greater than (>) character.
o The tag name is specified between the angle brackets.
« Most of the tags usually occur in pair: the start tag and the closing tag.

o The start tag is simply the tag name is enclosed in angle bracket whereas the closing tag
is specified including a forward slash (/).

e Some tags are the empty i.c. they don’t have the closing tag.
o Tags are not case sensitive.

e The starting and closing tag name must be the same. For example hello </i> is
invalid as both are different.

o If you don’t specify the angle brackets (<>) for a tag, the browser will treat the tag name
as a simple text.

The tag can also have attributes to provide additional information about the tag to the
browser.

Basic tags
The following table shows the Basic HTML tags that define the basic web page:

Tag Description

<html> </html> Specifies the document as a web page.

<head> </head> Specifies the descriptive information about the web documents.

<title> </title> Specifies the title of the web page.

<body> </body> Specifies the body of a web document.

The following code shows how to use basic tags.

<html>

<head> Heading goes here...</head>
<title> Title goes here...</title>
<body> Body goes here...</body>

</html>

Formatting Tags

The following table shows the HTML tags used for formatting the text:

Tag

<> </i>

<ins> </ins>

<mark> </mark>

Description

Specifies the text as bold. Eg. this is bold text

It is a phrase text. It specifies the emphasized text.
Eg. Emphasized text

It is a phrase tag. It specifies an important text. Eg. this is
strong text

The content of italic tag is displayed in italic. Eg. Italic text

Specifies the subscripted text. Eg. X1

Defines the superscripted text. Eg. X2

Specifies the inserted text. Eg. The price of pen is now 15.

Specifies the deleted text. Eg. The price of pen is now 15.

Specifies the marked text. Eg. It is raining

Table Tags

Following table describe the commonaly used table tags:

Tag

<table> </table>

<tr> </tr>

<th> </th>

<td> </td>

<caption> </caption>

<colgroup> </colgroup>

List tags

Description

Specifies a table.

Specifies a row in the table.

Specifies header cell in the table.

Specifies the data in an cell of the table.

Specifies the table caption.

Specifies a group of columns in a table for formatting.

Following table describe the commonaly used list tags:

Tag Description
 Specifies an unordered list.
 Specifies an ordered list.
 Specifies a list item.
<dI> </dI> Specifies a description list.

<dt> </dt> Specifies the term in a description list.

<dd> </dd> Specifies description of term in a description list.

Frames

Frames help us to divide the browser’s window into multiple rectangular regions. Each region
contains separate html web page and each of them work independently.

A set of frames in the entire browser is known as frameset. It tells the browser how to divide
browser window into frames and the web pages that each has to load.

The following table describes the various tags used for creating frames:

Tag Description
<frameset> It is replacement of the <body> tag. It doesn’t contain the tags
</frameset> that are normally used in <body> element; instead it contains the

<frame> element used to add each frame.

<frame> Specifies the content of different frames in a web page.
</frame>

<base> </base> It is used to set the default target frame in any page that contains
links whose contents are displayed in another frame.

Forms
Forms are used to input the values. These values are sent to the server for processing. Forms

uses input elements such as text fields, check boxes, radio buttons, lists, submit buttons etc. to
enter the data into it.

The following table describes the commonly used tags while creating a form:

Tag Description

<form> </form> It is used to create HTML form.

<input> </input> Specifies the input field.

<textarea> Specifies a text area control that allows to enter multi-line
</textarea> text.

<label> </label> Specifies the label for an input element.

Marking up for structure and style

HTML stands for Hypertext Markup Language, and it is the most widely used language to
write Web Pages. As its name suggests, HTML is a markup language.

o Hypertext refers to the way in which Web pages (HTML documents) are linked
together. When you click a link in a Web page, you are using hypertext.

e Markup Language describes how HTML works. With a markup language, you simply
"mark up" a text document with tags that tell a Web browser how to structure it to
display.

Originally, HTML was developed with the intent of defining the structure of documents like
headings, paragraphs, lists, and so forth to facilitate the sharing of scientific information
between researchers.

All you need to do to use HTML is to learn what type of markup to use to get the results you
want.

Creating HTML Document:

Creating an HTML document is easy. To begin coding HTML you need only two things: a
simple-text editor and a web browser. Notepad is the most basic of simple-text editors and you
will probably code a fair amount of HTML with it.

You can use our HTML Online Editor to learn HTML. Here are the simple steps to create a
baisc HTML document:

o Open Notepad or another text editor.

e At the top of the page type <htmlI>.

e On the next line, indent five spaces and now add the opening header tag: <head>.
« On the next line, indent ten spaces and type <title> </title>.

o (o to the next line, indent five spaces from the margin and insert the closing header tag:
</head>.

https://www.tutorialspoint.com/html/html_editor.htm

o Five spaces in from the margin on the next line, type<body>.

« Now drop down another line and type the closing tag right below its mate: </body>.
« Finally, go to the next line and type </html>.

« In the File menu, choose Save As.

« Inthe Save as Type option box, choose All Files.

o Name the file template.htm.

e Click Save.

You have basic HTML document now, to see some result put the following code in title and
body tags.

<htmI>

<head>

<title>This is document title</title>
</head>

<body>

<h1>This is a heading</h1>

<p>Document description goes here</p>
</body>

</htmi>

Now you have created one HTML page and you can use a Web Browser to open this HTML
file to see the result. Hope you understood that Web Pages are nothing but they are simple
HTML files with some content which can be rendered using Web Browsers.

Here <html>, <head>,...<p>, <h1> etc. are called HTML tags. HTML tags are building blocks
of an HTML document nd we will learn all the HTML tags in subsequent chapters.

NOTE: One HTML file can have extension as .htm or .html. So you can use either of them
based on your comfort.

HTML Document Structure:

An HTML document starts and ends with <htmI> and >/html> tags. These tags tell the browser
that the entire document is composed in HTML. Inside these two tags, the document is split into
two sections:

e The <head>...</head> elements, which contain information about the document such as
title of the document, author of the document etc. Information inside this tag does not
display outside.

e The <body>...</body> elements, which contain the real content of the document that you
see on your screen.

HTML Tags and Elements:

HTML language is a markup language and we use many tags to markup text. In the above
example you have seen <html>, <body> etc. are called HTML tags or HTML elements.

Every tag consists of a tag name, sometimes followed by an optional list of tag attributes , all
placed between opening and closing brackets (< and >). The simplest tag is nothing more than a
name appropriately enclosed in brackets, such as <head> and <i>. More complicated tags
contain one or more attributes , which specify or modify the behavior of the tag.

According to the HTML standard, tag and attribute names are not case-sensitive. There's no
difference in effect between <head>, <Head>, <HEAD>, or even <HeaD>; they are all
equivalent. But with XHTML, case is important: all current standard tag and attribute names are
in lowercase.

HTML is Forgiving?

A very good quality associated with all the browsers is that they would not give any error if you
have not put any HTML tag or attribute properly. They will just ignore that tag or attribute and
will apply only correct tags and attributes before displaying the result.

We can not say, HTML is forgiving because this is just a markup language and required to
format documents.

Basic Page Markups

Heading Tags

Any document starts with a heading. You can use different sizes for your headings. HTML also
has six levels of headings, which use the elements <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>.
While displaying any heading, browser adds one line before and one line after that heading.

Example

<IDOCTYPE html>
<html>

<head>
<title>Heading Example</title>
</head>

<body>
<h1>This is heading 1</h1>
<h2>This is heading 2</h2>
<h3>This is heading 3</h3>
<h4>This is heading 4</h4>

<h5>This is heading 5</h5>
<h6>This is heading 6</h6>
</body>

</html>

This will produce the following result —

Paragraph Tag

The <p> tag offers a way to structure your text into different paragraphs. Each paragraph of text
should go in between an opening <p> and a closing </p> tag as shown below in the example —

Example

<IDOCTYPE html>
<html>

<head>
<title>Paragraph Example</title>
</head>

<body>
<p>Here is a first paragraph of text.</p>
<p>Here is a second paragraph of text.</p>
<p>Here is a third paragraph of text.</p>
</body>

</html>

This will produce the following result —

Line Break Tag

Whenever you use the
 element, anything following it starts from the next line. This tag
is an example of an empty element, where you do not need opening and closing tags, as there is
nothing to go in between them.

The
 tag has a space between the characters br and the forward slash. If you omit this
space, older browsers will have trouble rendering the line break, while if you miss the forward
slash character and just use
 it is not valid in XHTML.

Example

<IDOCTYPE html>
<htmlI>

<head>
<title>Line Break Example</title>

</head>

<body>
<p>Hello

You delivered your assignment ontime.

Thanks

Mahnaz</p>
</body>

</html>

This will produce the following result —

Centering Content
You can use <center> tag to put any content in the center of the page or any table cell.

Example

<IDOCTYPE html>
<html>

<head>
<title>Centring Content Example</title>
</head>

<body>
<p>This text is not in the center.</p>

<center>
<p>This text is in the center.</p>

</center>
</body>

</html>

This will produce following result —

Horizontal Lines

Horizontal lines are used to visually break-up sections of a document. The <hr> tag creates a
line from the current position in the document to the right margin and breaks the line

accordingly.

For example, you may want to give a line between two paragraphs as in the given example
below —

Example

<IDOCTYPE html>
<html>

<head>
<title>Horizontal Line Example</title>
</head>

<body>
<p>This is paragraph one and should be on top</p>
<hr />
<p>This is paragraph two and should be at bottom</p>
</body>

</html>

This will produce the following result —

Again <hr /> tag is an example of the empty element, where you do not need opening and
closing tags, as there is nothing to go in between them.

The <hr /> element has a space between the characters hr and the forward slash. If you omit
this space, older browsers will have trouble rendering the horizontal line, while if you miss the
forward slash character and just use <hr> it is not valid in XHTML

Preserve Formatting

Sometimes, you want your text to follow the exact format of how it is written in the HTML
document. In these cases, you can use the preformatted tag <pre>.

Any text between the opening <pre> tag and the closing </pre> tag will preserve the formatting
of the source document.

Example

<IDOCTYPE html>
<htmlI>

<head>
<title>Preserve Formatting Example</title>
</head>

<body>

<p|’e>
function testFunction(strText){
alert (strText)
¥
</pre>
</body>

</html>

This will produce the following result —

Try using the same code without keeping it inside <pre>...</pre> tags

Nonbreaking Spaces

Suppose you want to use the phrase "12 Angry Men." Here, you would not want a browser to
split the "12, Angry" and "Men" across two lines —

An example of this technique appears in the movie "12 Angry Men."

In cases, where you do not want the client browser to break text, you should use a nonbreaking
space entity instead of a normal space. For example, when coding the "12 Angry Men"
in a paragraph, you should use something similar to the following code —

Example

<IDOCTYPE html>
<html>

<head>
<title>Nonbreaking Spaces Example</title>
</head>

<body>
<p>An example of this technique appears in the movie "12 Angry Men."</p>
</body>

</html>

Absolute and Relative Link

Still today, one of the more tricky and confusing things about HTML is linking to other pages
and sites, especially when absolute and relative paths come into play. But worry not! Creating
links — relative and absolute alike — is actually fairly easy. Read on, and by the end of this

article, you'll know the difference between these two types of links, as well as when and how to
use them.

Of course, it's still important to understand how relative and absolute links work, so read on...

First off, as you may or may not know, you would use the following code to create a link in
HTML.:
Click Me

linkhere.nhtml would be the page you want to link to, and Click Me would be the blue,
underlined link that the page displays.

In the example above, we used a relative path. You can tell if a link is relative if the path isn't a
full website address. (A full website address includes http://www.) As you may have guessed,
an absolute path does provide the full website address. Here are a few basic examples of relative
and absolute paths:

Relative Paths

e index.html

o /graphics/image.png

e /help/articles/how-do-i-set-up-a-webpage.html

Absolute Paths

e http://lwww.mysite.com

o http://www.mysite.com/graphics/image.png

e http://lwww.mysite.com/help/articles/how-do-i-set-up-a-webpage.htmi

The first difference you'll notice between the two different types of links is that absolute

paths always include the domain name of the website, including http://www., whereas relative
links only point to a file or a file path. When a user clicks a relative link, the browser takes them
to that location on the current site. For that reason, you can only use relative links when linking
to pages or files within your site, and you must use absolute links if you're linking to a location
on another website.

So, when a user clicks a relative link, how does their browser know where to take them? Well, it
looks for the location of the file relative to the page where the link appears. (That's where the
name comes from!) Let's get back to our first example:

Click Me

This link points to a filename, with no path provided. This means that linkhere.html is located

in the same folder as the page where this link appears. If both files were located in the root

directory of the Website http://www.website.com, the actual website address the user would be

taken to is http://www.website.com/linkhere.html. If both files were located in a subfolder of

the root directory called files, the user would be taken

to http://www.website.com/files/linkhere.html.

How about another example? Let's say we our http://www.website.com domain had a subfolder
called pictures. Inside the pictures folder is a file called pictures.html. The full path to this page
would be:

"http://www.website.com/pictures/pictures.html™

Still with us? Good. Let's say in this pictures.html file, we have a link:
More Pictures

http://www.mysite.com/
http://www.mysite.com/graphics/image.png
http://www.mysite.com/help/articles/how-do-i-set-up-a-webpage.html
http://www.website.com/
http://www.website.com/linkhere.html
http://www.website.com/files/linkhere.html
http://www.website.com/
http://www.website.com/pictures/pictures.html

If someone clicked that, where do you think it would take them? If you
said http://www.website.com/pictures/morepictures.html, you'd be right! You probably know
why it would take them there: because both files are saved in the pictures subfolder.

Now, what if we wanted to use a relative link to show a page in another folder? If you want to
link to a file in a subfolder of the current folder, provide the file path to that file, like so:
Read about my Tahiti vacation.

In this example, you're telling the browser to look in the current folder (pictures) for a subfolder
(tahiti-vacation) that contains the file you want the user taken to (tahiti.ntml). You can link to
as many subfolders as you need using this method.

What if you want to link to a file in a folder above the current folder? You have to tell the
browser to move up one folder in your relative link by putting two periods and a slash (../) in
front of the filename or path:

Learn more about my Website.

When the browser sees ../ in front of the filename, it looks in the folder above the current folder.
You can use this as many times as you need to. You can also tell the browser to look in a
subfolder of the directory above the current one. Using the same example website from above,
let's say we wanted to create a link that would take the user to a page called stories.html located
in another folder called stories. This folder is located in the root directory, one folder up from
the current folder, pictures. Here's how a relative link to this file would look:

Read Stories

Now, let's talk about absolute paths. Like we mentioned earlier, absolute paths provide the
complete website address where you want the user to go. An absolute link would look like this:
Click here to visit CoffeeCup Software.

You must use absolute paths when linking to another Website, but you can also use absolute
paths within your own website. This practice is generally frowned upon, though. Relative links
make it easy to do things like change your domain name without having to go through all your
HTML pages, hunting down links and changing the names. As an added bonus, they force you to
keep your site structure neat and organized, which is always a good idea.

To format both unordered and ordered lists, use the list-style-type, list-style-image, and list-style-
position properties.

Example
Let us see an example wherein we are formatting unordered lists (ul) —

<IDOCTYPE html>
<html>

<head>

http://www.website.com/pictures/morepictures.html
http://www.coffeecup.com/

<style>
ul {

list-style-type: square;
¥
<[style>
</head>
<body>
<h2>Teams</h2>

India
Australia
England</Ili>
West Indies
South Africa
Srilanka</Ii>

</body>
</html>

Output

Teams

India
Australia
England
West Indies
South Africa
Srilanka

Example

Let us now see an example wherein we are formatting ordered lists (ol) —

<IDOCTYPE html>
<htmI>
<head>
<style>
ol {

list-style-type: upper-roman;
}
<[style>
</head>
<body>
<h2>Teams</h2>

India
Australia
England</Ili>
West Indies
South Africa
Srilanka

</body>
</html>

Output

Teams

I India

Il Australia
III England
IV. West Indies
V. South Africa
VI Srilanka

Example

Let us see another example wherein we will set an image for list style for both ordered and
unordered lists —

<IDOCTYPE html>
<html>
<head>
<style>
ul.demol {
list-style-image: url(‘https://www.tutorialspoint.com/images/Swift.png");
}
ol.demo2 {
list-style-image: url(‘https://www.tutorialspoint.com/images/Swift.png’);
}
</style>
</head>
<body>
<h2>Teams</h2>

<ul class="demol">

http://www.tutorialspoint.com/images/Swift.png%27)%3B
http://www.tutorialspoint.com/images/Swift.png%27)%3B
http://www.tutorialspoint.com/images/Swift.png%27)%3B
http://www.tutorialspoint.com/images/Swift.png%27)%3B

India - Qualified for WordCup
Australia - Qualified for WordCup</Ili>
England - Qualified for WordCup

<h2>Players</h2>

<ol class="demo2">

Virat Kohli

David Warner

Steve Smith</Ii>

</body>

</html>

Output

Teams

3
3
3

Plavers

India - Qualified for WordCup
Australia - Qualified for WordCup

England - Qualified for WordCup

Virat Kohli

S
3

David Warner

Steve Smith

Embedding images and controlling Appearance

Insert Image

You can insert any image in your web page by using tag. Following is the simple syntax
to use this tag.

The tag is an empty tag, which means that, it can contain only list of attributes and it has
no closing tag.

Example

To try following example, let's keep our HTML file test.htm and image file test.png in the same
directory —

<IDOCTYPE html>
<html|>

<head>
<title>Using Image in Webpage</title>
</head>

<body>

<p>Simple Image Insert</p>

</body>

</html>

This will produce the following result —

You can use PNG, JPEG or GIF image file based on your comfort but make sure you specify
correct image file name in src attribute. Image name is always case sensitive.

The alt attribute is a mandatory attribute which specifies an alternate text for an image, if the
image cannot be displayed.

Set Image Location

Usually we keep all the images in a separate directory. So let's keep HTML file test.htm in our

home directory and create a subdirectory images inside the home directory where we will keep
our image test.png.

Example

Assuming our image location is "image/test.png", try the following example —

<IDOCTYPE html>
<html>

<head>
<title>Using Image in Webpage</title>
</head>

<body>

<p>Simple Image Insert</p>

</body>

</html>

This will produce the following result —

Set Image Width/Height

You can set image width and height based on your requirement
using width and height attributes. You can specify width and height of the image in terms of
either pixels or percentage of its actual size.

Example

<IDOCTYPE html>
<html>

<head>
<title>Set Image Width and Height</title>
</head>

<body>
<p>Setting image width and height</p>

</body>

</html>

This will produce the following result —

Set Image Border

By default, image will have a border around it, you can specify border thickness in terms of
pixels using border attribute. A thickness of 0 means, no border around the picture.

Example

<IDOCTYPE html>
<html>

<head>
<title>Set Image Border</title>
</head>

<body>

<p>Setting image Border</p>

</body>

</html>

This will produce the following result —
Set Image Alignment

By default, image will align at the left side of the page, but you can use align attribute to set it
in the center or right.

Example

<IDOCTYPE html>
<html>

<head>
<title>Set Image Alignment</title>
</head>

<body>

<p>Setting image Alignment</p>

</body>

</html>

Table creation and use

To create table in HTML, use the <table> tag. A table consist of rows and columns, which can be
set using one or more <tr>, <th>, and <td> elements. A table row is defined by the <tr> tag. To
set table header, use the <th> tag. For a table cell, use the <td> tag.

Just keep in mind, table attributes such as align, bgcolor, border, cellpadding, cellspacing
deprecated and isn’t supported by HTMLS. Do not use them.

<IDOCTYPE html>
<html>
<head></head>
<body>
[<table>
<tr>
<th>table header</th>
</tr>
<tr>
<td>table cell</td>
</tr>
| </table>
</body>
</html>

You can try the following code to create a table in HTML. We’re also using the <style> tag to
style the table border

Example

<IDOCTYPE html>
<htmI>
<head>
<style>
table, th, td {
border: 1px solid black;
}
</style>

</head>

<body>
<h1>Programming Languages</h1>
<table>

<tr>

<th>Language</th>
<th>Release Year</th>
</tr>
<tr>
<td>Java</td>
<td>1995</td>
</tr>
<tr>
<td>Pascal</td>
<td>1970</td>
</tr>
</table>
</body>

</html>

HTML Frames

HTML frames are used to divide your browser window into multiple sections where each
section can load a separate HTML document. A collection of frames in the browser window is
known as a frameset. The window is divided into frames in a similar way the tables are
organized: into rows and columns.

Disadvantages of Frames
There are few drawbacks with using frames, so it's never recommended to use frames in your
webpages —

e Some smaller devices cannot cope with frames often because their screen is not big
enough to be divided up.

o Sometimes your page will be displayed differently on different computers due to
different screen resolution.

e The browser's back button might not work as the user hopes.

There are still few browsers that do not support frame technology.

Creating Frames

To use frames on a page we use <frameset> tag instead of <body> tag. The <frameset> tag
defines, how to divide the window into frames. The rows attribute of <frameset> tag defines

horizontal frames and cols attribute defines vertical frames. Each frame is indicated by <frame>
tag and it defines which HTML document shall open into the frame.

Note — The <frame> tag deprecated in HTML5. Do not use this element.
Example

Following is the example to create three horizontal frames —

<IDOCTYPE html>
<html>

<head>

<title>HTML Frames</title>
</head>

<frameset rows = "10%,80%,10%">

<frame name = "top" src = "/html/top_frame.htm" />
<frame name = "main" src = "/html/main_frame.htm" />
<frame name = "bottom" src = "/html/bottom_frame.htm" />

<noframes>
<body>Your browser does not support frames.</body>
</noframes>
</frameset>

</html>

This will produce the following result —

Example

Let's put the above example as follows, here we replaced rows attribute by cols and changed
their width. This will create all the three frames vertically —

<IDOCTYPE html>
<html>

<head>
<title>HTML Frames</title>
</head>

<frameset cols = "25%,50%,25%">
<frame name = "left" src = "/html/top_frame.htm" />
<frame name = "center" src = "/html/main_frame.htm" />
<frame name = "right" src = "/html/bottom_frame.htm" />

<noframes>
<body>Your browser does not support frames.</body>
</noframes>
<[/frameset>

</html>

This will produce the following result —
The <frameset> Tag Attributes

Following are important attributes of the <frameset> tag —

Sr.No Attribute & Description

cols

Specifies how many columns are contained in the frameset and the size of
each column. You can specify the width of each column in one of the four
ways —

Absolute values in pixels. For example, to create three vertical frames,
use cols = "100, 500, 100".

A percentage of the browser window. For example, to create three vertical
frames, use cols = "10%, 80%, 10%".

Using a wildcard symbol. For example, to create three vertical frames,
use cols = "10%, *, 10%". In this case wildcard takes remainder of the
window.

As relative widths of the browser window. For example, to create three
vertical frames, use cols = "3*, 2* 1*". This is an alternative to
percentages. You can use relative widths of the browser window. Here the
window is divided into sixths: the first column takes up half of the
window, the second takes one third, and the third takes one sixth.

rows

2 This attribute works just like the cols attribute and takes the same values,
but it is used to specify the rows in the frameset. For example, to create
two horizontal frames, use rows = "10%, 90%". You can specify the
height of each row in the same way as explained above for columns.

border

This attribute specifies the width of the border of each frame in pixels. For
example, border = "5". A value of zero means no border.

frameborder

4 This attribute specifies whether a three-dimensional border should be
displayed between frames. This attribute takes value either 1 (yes) or 0
(no). For example frameborder = "0" specifies no border.

framespacing

5 This attribute specifies the amount of space between frames in a frameset.
This can take any integer value. For example framespacing = "10" means
there should be 10 pixels spacing between each frames.

The <frame> Tag Attributes
Following are the important attributes of <frame> tag —

Sr.No Attribute & Description

Src

1 This attribute is used to give the file name that should be loaded in the
frame. Its value can be any URL. For example, src =
"/html/top_frame.htm" will load an HTML file available in html directory.

name

This attribute allows you to give a name to a frame. It is used to indicate

2 which frame a document should be loaded into. This is especially
important when you want to create links in one frame that load pages into
an another frame, in which case the second frame needs a name to identify
itself as the target of the link.

frameborder

3 This attribute specifies whether or not the borders of that frame are shown;
it overrides the value given in the frameborder attribute on the <frameset>
tag if one is given, and this can take values either 1 (yes) or 0 (no).

marginwidth

4 This attribute allows you to specify the width of the space between the left
and right of the frame's borders and the frame's content. The value is given
in pixels. For example marginwidth = "10".

marginheight

S This attribute allows you to specify the height of the space between the
top and bottom of the frame's borders and its contents. The value is given
in pixels. For example marginheight = "10".

noresize

6 By default, you can resize any frame by clicking and dragging on the
borders of a frame. The noresize attribute prevents a user from being able
to resize the frame. For example noresize = "noresize".

scrolling

7 This attribute controls the appearance of the scrollbars that appear on the
frame. This takes values either "yes", "no" or "auto". For example
scrolling = "no™ means it should not have scroll bars.

longdesc

8 This attribute allows you to provide a link to another page containing a
long description of the contents of the frame. For example longdesc =
"framedescription.htm"

Browser Support for Frames
If a user is using any old browser or any browser, which does not support frames then
<noframes> element should be displayed to the user.

So you must place a <body> element inside the <noframes> element because the <frameset>
element is supposed to replace the <body> element, but if a browser does not understand

<frameset> element then it should understand what is inside the <body> element which is
contained in a <noframes> element.

You can put some nice message for your user having old browsers. For example, Sorry!! your
browser does not support frames. as shown in the above example.

Frame's name and target attributes

One of the most popular uses of frames is to place navigation bars in one frame and then load
main pages into a separate frame.

Let's see following example where a test.htm file has following code —

<IDOCTYPE html>
<html>

<head>
<title>HTML Target Frames</title>
</head>

<frameset cols = "200, *">
<frame src = "/html/menu.htm" name = "menu_page" />
<frame src = "/html/main.htm" name = "main_page" />

<noframes>
<body>Your browser does not support frames.</body>
</noframes>
</frameset>

</html>

Here, we have created two columns to fill with two frames. The first frame is 200 pixels wide
and will contain the navigation menu bar implemented by menu.htm file. The second column
fills in remaining space and will contain the main part of the page and it is implemented
by main.htm file. For all the three links available in menu bar, we have mentioned target frame
as main_page, so whenever you click any of the links in menu bar, available link will open in
main page.

Following is the content of menu.htm file

<IDOCTYPE html>
<html>

<body bgcolor = "#4a7d49">
Google

http://www.google.com/

Muicrosoft

BBC News
</body>

</html>

Following is the content of main.htm file —

<IDOCTYPE html>
<html>

<body bgcolor = "#b5dcb3">
<h3>This is main page and content from any link will be displayed here.</h3>
<p>So now click any link and see the result.</p>

</body>

</html>

When we load test.htm file, it produces following result —

Now you can try to click links available in the left panel and see the
The targetattribute can also take one of the following values —

Sr.No Option & Description

1 _self

Loads the page into the current frame.

2 _blank

Loads a page into a new browser window. Opening a new window.

_parent

Loads the page into the parent window, which in the case of a single
frameset is the main browser window.

result.

http://www.microsoft.com/
http://news.bbc.co.uk/

4 _top
Loads the page into the browser window, replacing any current frames.

5 targetframe
Loads the page into a named targetframe.

Nesting

Nested Framesets
Let's move now to a more real world [F TN LI
example, and a few more techniques Fie Edit Wiew Go Bookmarks ‘window Help

for using frames. One of the most = e _
. s Lnn::atn:ln:IfIIE:fﬁ#tempx’recmesframetup.html j N
popular uses for frames is the "title bar

and side menu” method. We'll use as an [Great Recipes
example a page of recipes, pictured at
rlgh_t. The title of the page, "Great | contenTs || Breakfast Tacos :I
Recipes" stays s?,tat.lonary inaframeat| . ® o odsimdredpottne
top, a contents list is on the left, and the | Taces ® mall onion
. . & b T
recipes themselves are in the large boX | sressama . ;ﬁﬁﬂm
on the right. As you click on the NaMe | pguic B * :zhﬂ_f@ﬁm*”hpmgmmm
of a recipe in the contents list, that | Zifie ® pinchofsalt
))] ® frach cilaniro
recipe appears on the right. Go ahead | ReffiedEems ® bit ofoil
! ® omatoes
and try out the real page. (We're sorry mish Rice ot T T
if these recipes make you hungry. They | st & su . e
did us. These recipes come from the | Embih x| [
F=3@| | Document: Done | o

wonderful vegetarian recipe

site Veggies Unite!.)

Remember that a frameset is like a "table of documents™ with rows and columns. The recipes
page, however, has one column on top, but two on bottom. This is done by nesting framesets,
putting one frameset inside another.

Here's the code for the frameset file for the recipes page:

<HTML>
<HEAD>
<TITLE>Great Recipes</TITLE>
</HEAD>

https://www.linuxtopia.org/HowToGuides/HTML_tutorials/frames/recipesframetop.html
https://vegweb.com/

<FRAMESET ROWS="15%,*">
<FRAME SRC="recipetitlebar.ntm|" NAME=TITLE SCROLLING=NO>

<FRAMESET COLS="20%,*">
<FRAME SRC="recipesidebar.htmlI" NAME=SIDEBAR>
<FRAME SRC="recipes.html" NAME=RECIPES>
</FRAMESET>

<NOFRAMES>

<H1>Great Recipes</H1>

No frames? No Problem! Take a look at our

no-frames version.
</NOFRAMES>

</FRAMESET>

</HTML>

The first <FRAMESET ...> tag says "this frameset will have two rows" (and, implicitly, only
one column, since COLS was left out). The first <FRAME ...> tag puts a document in the first
frame. The second frame is filled in not by a document but by another frameset. The

second <FRAMESET ...> is creating a "table within a table™, or, to be more correct, a frameset
within a frameset.

Targetting

HTML <a> target Attribute

Example

The target attribute specifies where to open the linked document:

Visit W3Schools

Definition and Usage

The target attribute specifies where to open the linked document.

https://www.w3schools.com/tags/tag_a.asp
http://www.w3schools.com/
http://www.w3schools.com/

Browser Support

Attribute

Target Yes Yes Yes Yes
Syntax

Attribute Values

Value Description

_blank Opens the linked document in a new window or tab

_self Opens the linked document in the same frame as it was clicked (this is default)
_parent Opens the linked document in the parent frame

_top Opens the linked document in the full body of the window
Framename Opens the linked document in a named frame

<IDOCTYPE html>
<html>

<body>

Yes

<h1>The a target attribute</h1>

<p>Open link in a new window or tab: <a href="https://www.w3schools.com"
target=""_blank'">Visit W3Schools!</p>

</body>

</html>

The a target attribute

Open link in a new window or tab: Visit W3Schools!

HTML meta tags

HTML lets you specify metadata - additional important information about a document in a
variety of ways. The META elements can be used to include name/value pairs describing
properties of the HTML document, such as author, expiry date, a list of keywords, document
author etc.

The <meta> tag is used to provide such additional information. This tag is an empty element
and so does not have a closing tag but it carries information within its attributes.

You can include one or more meta tags in your document based on what information you want
to keep in your document but in general, meta tags do not impact physical appearance of the
document so from appearance point of view, it does not matter if you include them or not.

Adding Meta Tags to Your Documents
You can add metadata to your web pages by placing <meta> tags inside the header of the
document which is represented by <head> and </head> tags. A meta tag can have following

attributes in addition to core attributes —

Sr.No Attribute & Description

Name

Name for the property. Can be anything. Examples include, keywords,

http://www.w3schools.com/
https://www.w3schools.com/

description, author, revised, generator etc.

2 Content
Specifies the property's value.

3 Scheme
Specifies a scheme to interpret the property's value (as declared in the
content attribute).

4

http-equiv

Used for http response message headers. For example, http-equiv can be
used to refresh the page or to set a cookie. Values include content-type,
expires, refresh and set-cookie.

Specifying Keywords

You can use <meta> tag to specify important keywords related to the document and later these
keywords are used by the search engines while indexing your webpage for searching purpose.

Example

Following is an example, where we are adding HTML, Meta Tags, Metadata as important
keywords about the document.

<IDOCTYPE html>
<html>

<head>

<title>Meta Tags Example</title>

<meta name = "keywords" content = "HTML, Meta Tags, Metadata" />
</head>

<body>
<p>Hello HTML5!</p>
</body>

</html>

This will produce the following result —

Document Description

You can use <meta> tag to give a short description about the document. This again can be used
by various search engines while indexing your webpage for searching purpose.

Example

<IDOCTYPE html>
<html>

<head>
<title>Meta Tags Example</title>
<meta name = "keywords" content = "HTML, Meta Tags, Metadata" />
<meta name = "description" content = "Learning about Meta Tags." />
</head>

<body>
<p>Hello HTML5!</p>
</body>

</html>

Document Revision Date

You can use <meta> tag to give information about when last time the document was updated.
This information can be used by various web browsers while refreshing your webpage.

Example

<IDOCTYPE html>
<html>

<head>
<title>Meta Tags Example</title>
<meta name = "keywords" content = "HTML, Meta Tags, Metadata" />
<meta name = "description™ content = "Learning about Meta Tags." />
<meta name = "revised" content = "Tutorialspoint, 3/7/2014" />
</head>

<body>
<p>Hello HTML5!</p>
</body>

</html>

Document Refreshing

A <meta> tag can be used to specify a duration after which your web page will keep refreshing
automatically.

Example

If you want your page keep refreshing after every 5 seconds then use the following syntax.

<IDOCTYPE html>
<html>

<head>
<title>Meta Tags Example</title>
<meta name = "keywords" content = "HTML, Meta Tags, Metadata" />
<meta name = "description” content = "Learning about Meta Tags." />
<meta name = "revised" content = "Tutorialspoint, 3/7/2014" />
<meta http-equiv = "refresh" content = "5" />

</head>

<body>
<p>Hello HTML5!</p>
</body>

</html>

Page Redirection
You can use <meta> tag to redirect your page to any other webpage. You can also specify a
duration if you want to redirect the page after a certain number of seconds.

Example

Following is an example of redirecting current page to another page after 5 seconds. If you want
to redirect page immediately then do not specify content attribute.

<IDOCTYPE html>
<html>

<head>
<title>Meta Tags Example</title>
<meta name = "keywords" content = "HTML, Meta Tags, Metadata" />
<meta name = "description™ content = "Learning about Meta Tags." />
<meta name = "revised" content = "Tutorialspoint, 3/7/2014" />

<meta http-equiv = "refresh" content = "5; url = http://www.tutorialspoint.com" />
</head>

<body>
<p>Hello HTML5!</p>
</body>

http://www.tutorialspoint.com/

</html>

Setting Cookies

Cookies are data, stored in small text files on your computer and it is exchanged between web
browser and web server to keep track of various information based on your web application
need.

You can use <meta> tag to store cookies on client side and later this information can be used by
the Web Server to track a site visitor.

Example

Following is an example of redirecting current page to another page after 5 seconds. If you want
to redirect page immediately then do not specify content attribute.

<IDOCTYPE html>
<html>
<head>
<title>Meta Tags Example</title>
<meta http-equiv = "cookie" content = "userid = xyz; expires = Wednesday, 08-Aug-15
23:59:59 GMT;" />

</head>
<body>
<p>Hello HTML5!</p>
</body>
</html>

If you do not include the expiration date and time, the cookie is considered a session cookie and
will be deleted when the user exits the browser.

Note — You can check PHP and Cookies tutorial for a complete detail on Cookies.

Setting Author Name

You can set an author name in a web page using meta tag. See an example below —

Example

<IDOCTYPE html>
<html>

<head>
<title>Meta Tags Example</title>
<meta name = "keywords" content = "HTML, Meta Tags, Metadata" />
<meta name = "description™ content = "Learning about Meta Tags." />
<meta name = "author" content = "Mahnaz Mohtashim" />

</head>

http://www.tutorialspoint.com/php/php_cookies.htm

<body>
<p>Hello HTML5!</p>
</body>

</html>

Specify Character Set

You can use <meta> tag to specify character set used within the webpage.

Example

By default, Web servers and Web browsers use 1SO-8859-1 (Latinl) encoding to process Web
pages. Following is an example to set UTF-8 encoding —

<IDOCTYPE html>
<html>

<head>
<title>Meta Tags Example</title>
<meta name = "keywords" content = "HTML, Meta Tags, Metadata" />
<meta name = "description" content = "Learning about Meta Tags." />
<meta name = "author" content = "Mahnaz Mohtashim" />
<meta http-equiv = "Content-Type" content = "text/html; charset = UTF-8" />
</head>

<body>
<p>Hello HTML5!</p>
</body>

</html>

To serve the static page with traditional Chinese characters, the webpage must contain a <meta>
tag to set Big5 encoding —

<IDOCTYPE html>
<htmlI>

<head>
<title>Meta Tags Example</title>
<meta name = "keywords" content = "HTML, Meta Tags, Metadata" />
<meta name = "description™ content = "Learning about Meta Tags." />
<meta name = "author" content = "Mahnaz Mohtashim" />
<meta http-equiv = "Content-Type" content = "text/html; charset = Big5" />

</head>
<body>

<p>Hello HTML5!</p>
</body>

</html>

HTML Semantic Elements

Semantic elements = elements with a meaning.

What are Semantic Elements?
A semantic element clearly describes its meaning to both the browser and the developer.
Examples of non-semantic elements: <div> and - Tells nothing about its content.

Examples of semantic elements: <form>, <table>, and <article> - Clearly defines its content.

Semantic Elements in HTML

Many web sites contain HTML code like: <div id="nav"> <div class="header"> <div
id="footer"> to indicate navigation, header, and footer.

In HTML there are some semantic elements that can be used to define different parts of a web
page:

e <article>

e <aside>

e <details>

o <figcaption>
o <figure>

o <footer>

e <header>

e <main>

e <mark>

e <nav>

e <section>

° <summary>

e <time>
<header=
<nav=

<section=

<aside>

<article>

<footer=

HTML <section> Element
The <section> element defines a section in a document.

According to W3C's HTML documentation: "A section is a thematic grouping of content,
typically with a heading."

A home page could normally be split into sections for introduction, content, and contact
information.

Example

<section>

<h1>WWF</h1>

<p>The World Wide Fund for Nature (WWF) is ... </p>
</section>

HTML <article> Element
The <article> element specifies independent, self-contained content.

An article should make sense on its own, and it should be possible to read it independently from
the rest of the web site.

Examples of where an <article> element can be used:
e Forum post
o Blog post

o Newspaper article

Example

<article>
<h1>What Does WWF Do?</h1>
<p>WWF's mission is to stop the degradation of our planet's natural environment,
and build a future in which humans live in harmony with nature.</p>

</article>

Nesting <article> in <section> or Vice Versa?

The<article> element specifies independent, self-contained content.

The <section> element defines section in a document.

Can we use the definitions to decide how to nest those elements? No, we cannot!

So, on the Internet, you will find HTML pages with <section> elements
containing <article> elements, and <article> elements containing <section> elements.

You will also find pages with <section> elements containing <section> elements,
and <article> elements containing <article> elements.

Example for a newspaper: The sport <article> in the sport section, may have a
technical section in each <article>.

HTML <header> Element

The <header> element specifies a header for a document or section.

The <header> element should be used as a container for introductory content.
You can have several <header> elements in one document.
The following example defines a header for an article:

Example

<article>
<header>
<h1>What Does WWF Do?</h1>
<p>WWF's mission:</p>
</header>
<p>WWF's mission is to stop the degradation of our planet's natural environment,
and build a future in which humans live in harmony with nature.</p>
</article>

HTML <footer> Element
The <footer> element specifies a footer for a document or section.
A <footer> element should contain information about its containing element.

A footer typically contains the author of the document, copyright information, links to terms of
use, contact information, etc.

You may have several <footer> elements in one document.

Example

<footer>
<p>Posted by: Hege Refsnes</p>
<p>Contact information:
someone@example.com.</p>

</footer>

HTML <nav> Element

The <nav> element defines a set of navigation links.

mailto:someone@example.com
mailto:someone@example.com

Notice that NOT all links of a document should be inside a <nav> element. The <nav> element
is intended only for major block of navigation links.

Example

<nav>
HTML |
CSS |
JavaScript |
jQuery
</nav>

HTML <aside> Element
The <aside> element defines some content aside from the content it is placed in (like a sidebar).
The <aside> content should be related to the surrounding content.

Example

<p>My family and I visited The Epcot center this summer.</p>

<aside>

<h4>Epcot Center</h4>

<p>The Epcot Center is a theme park in Disney World, Florida.</p>
</aside>

HTML <figure> and <figcaption> Elements
An image and a caption can be grouped together in a <figure> element.
The purpose of a caption is to add a visual explanation to an image.

Example
<figure>

<figcaption>Figl. - Trulli, Puglia, Italy.</figcaption>
<[figure>

The element defines the image, the <figcaption> element defines the caption.

Why Semantic Elements?

According to the W3C: "A semantic Web allows data to be shared and reused across
applications, enterprises, and communities."

Semantic Elements in HTML
Below is an alphabetical list of some of the semantic elements in HTML.

The links go to our complete HTML Reference.

Tag Description

<article> Defines an article

<aside> Defines content aside from the page content

<details> Defines additional details that the user can view or hide

<figcaption> Defines a caption for a <figure> element

<figure> Specifies self-contained content, like illustrations, diagrams, photos, code listings, etc.
<footer> Defines a footer for a document or section

<header> Specifies a header for a document or section

https://www.w3schools.com/tags/default.asp
https://www.w3schools.com/tags/tag_article.asp
https://www.w3schools.com/tags/tag_aside.asp
https://www.w3schools.com/tags/tag_details.asp
https://www.w3schools.com/tags/tag_figcaption.asp
https://www.w3schools.com/tags/tag_figure.asp
https://www.w3schools.com/tags/tag_footer.asp
https://www.w3schools.com/tags/tag_header.asp

<main> Specifies the main content of a document

<mark> Defines marked/highlighted text

<nav> Defines navigation links

<section> Defines a section in a document

<summary> Defines a visible heading for a <details> element
<time> Defines a date/time

Doubling code & RDF

XML RDF

RDF Document Example

<?xml version="1.0"?>

<rdf:RDF
xmlins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

xmlins:si="https://www.w3schools.com/rdf/">

<rdf:Description rdf:about="https://www.w3schools.com">

https://www.w3schools.com/tags/tag_main.asp
https://www.w3schools.com/tags/tag_mark.asp
https://www.w3schools.com/tags/tag_nav.asp
https://www.w3schools.com/tags/tag_section.asp
https://www.w3schools.com/tags/tag_summary.asp
https://www.w3schools.com/tags/tag_time.asp
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3schools.com/rdf/
http://www.w3schools.com/rdf/
http://www.w3schools.com/
http://www.w3schools.com/
https://www.w3schools.com/xml/xml_soap.asp
https://www.w3schools.com/xml/xml_soap.asp

<si:title>W3Schools</si:title>
<si:author>Jan Egil Refsnes</si:author>
</rdf:Description>

</rdf:RDF>

What is RDF?
o RDF stands for Resource Description Framework
o RDF is a framework for describing resources on the web
o RDF is designed to be read and understood by computers
o RDF is not designed for being displayed to people

e RDF is written in XML
e RDF isa part of the W3C's Semantic Web Activity
e RDF isaW3C Recommendation from 10. February 2004

RDF - Examples of Use
o Describing properties for shopping items, such as price and availability
o Describing time schedules for web events
o Describing information about web pages (content, author, created and modified date)
o Describing content and rating for web pictures

« Describing content for search engines
o Describing electronic libraries

RDF is Designed to be Read by Computers

RDF was designed to provide a common way to describe information so it can be read and
understood by computer applications.

RDF descriptions are not designed to be displayed on the web.

RDF is Written in XML

RDF documents are written in XML. The XML language used by RDF is called RDF/XML.

By using XML, RDF information can easily be exchanged between different types of computers
using different types of operating systems and application languages.

RDF and "The Semantic Web"

The RDF language is a part of the W3C's Semantic Web Activity. W3C's "Semantic Web
Vision™ is a future where:

e Web information has exact meaning
e Web information can be understood and processed by computers
o Computers can integrate information from the web

RDF uses Web identifiers (URISs) to identify resources.

RDF describes resources with properties and property values.

RDF Resource, Property, and Property Value

RDF identifies things using Web identifiers (URIs), and describes resources with properties and
property values.

Explanation of Resource, Property, and Property value:

e A Resource is anything that can have a URI, such as "https://www.w3schools.com/rdf"

« A Property is a Resource that has a name, such as "author" or "homepage"

e A Property value is the value of a Property, such as "Jan Egil Refsnes" or
"https://www.w3schools.com” (note that a property value can be another resource)

The following RDF document could describe the resource "https://www.w3schools.com/rdf":

<?xml version="1.0"?>

<RDF>
<Description about="https://www.w3schools.com/rdf">
<author>Jan Egil Refsnes</author>
<homepage>https://www.w3schools.com</homepage>
</Description>
</RDF>

The example above is simplified. Namespaces are omitted.

http://www.w3schools.com/rdf
http://www.w3schools.com/rdf
http://www.w3schools.com/
http://www.w3schools.com/
http://www.w3schools.com/rdf
http://www.w3schools.com/rdf
http://www.w3schools.com/rdf
http://www.w3schools.com/rdf
http://www.w3schools.com/
http://www.w3schools.com/

RDF Statements

The combination of a Resource, a Property, and a Property value forms a Statement (known as
the subject, predicate and object of a Statement).

Let's look at some example statements to get a better understanding:
Statement: "The author of https://www.w3schools.com/rdf is Jan Egil Refsnes".
e The subject of the statement above is: https://www.w3schools.com/rdf
e The predicate is: author
e The object is: Jan Egil Refsnes
Statement: "The homepage of https://www.w3schools.com/rdf is https://www.w3schools.com”.
e The subject of the statement above is: https://www.w3schools.com/rdf

e The predicate is: homepage
e The object is: https://www.w3schools.com

http://www.w3schools.com/rdf
http://www.w3schools.com/rdf
http://www.w3schools.com/rdf
http://www.w3schools.com/rdf
http://www.w3schools.com/rdf
http://www.w3schools.com/rdf
http://www.w3schools.com/
http://www.w3schools.com/
http://www.w3schools.com/rdf
http://www.w3schools.com/rdf
http://www.w3schools.com/
http://www.w3schools.com/

UNIT-2

Separating style from structure with style sheets:

Internal style specification within HTML
External linked style specification using CSS

Cascading Style Sheets (CSS) describe how documents are presented on screens,
in print, or perhaps how they are pronounced. W3C has actively promoted the use
of style sheets on the Web since the consortium was founded in 1994.

Cascading Style Sheets (CSS) provide easy and effective alternatives to specify
various attributes for the HTML tags. Using CSS, you can specify a number of
style properties for a given HTML element. Each property has a name and a
value, separated by a colon (). Each property declaration is separated by a semi-
colon (;).

Example

First let's consider an example of HTML document which makes use of
tag and associated attributes to specify text color and font size —

<IDOCTYPE html>
<html>

<head>
<title>HTML CSS«</title>
</head>

<body>
<p>Hello, World!</p>
</body>

</html>

We can re-write above example with the help of Style Sheet as follows —

<IDOCTYPE html>
<html>

<head>
<title>HTML CSS</title>

</head>

<body>
<p style = "color:green; font-size:24px;" >Hello, World!</p>

</body>

</html>
This will produce the following result —
You can use CSS in three ways in your HTML document —

« External Style Sheet — Define style sheet rules in a separate .css file and
then include that file in your HTML document using HTML <link> tag.

Internal Style Sheet — Define style sheet rules in header section of the

HTML document using <style> tag.
Inline Style Sheet — Define style sheet rules directly along-with the HTML

elements using style attribute.
Let's see all the three cases one by one with the help of suitable examples.

External Style Sheet

If you need to use your style sheet to various pages, then its always recommended
to define a common style sheet in a separate file. A cascading style sheet file will
have extension as .css and it will be included in HTML files using <link> tag.

Example
Consider we define a style sheet file style.css which has following rules —

red {
color: red;
}

thick {
font-size:20px;
}

.green {

color:green;

¥
Here we defined three CSS rules which will be applicable to three different
classes defined for the HTML tags. | suggest you should not bother about how
these rules are being defined because you will learn them while studying CSS.
Now let's make use of the above external CSS file in our following HTML

document —

<IDOCTYPE html>
<html>

<head>
<title>HTML External CSS</title>
<link rel = "stylesheet" type = "text/css" href = "/html/style.css">

</head>

<body>

<p class = "red">This is red</p>

<p class = "thick">This is thick</p>

<p class = "green">This is green</p>

<p class = "thick green">This is thick and green</p>
</body>

</html>

This will produce the following result —

Internal Style Sheet

If you want to apply Style Sheet rules to a single document only, then you can
include those rules in header section of the HTML document using <style> tag.
Rules defined in internal style sheet overrides the rules defined in an external CSS
file.

Example

Let's re-write above example once again, but here we will write style sheet rules in
the same HTML document using <style> tag —

<IDOCTYPE html>
<html>

<head>
<title>HTML Internal CSS</title>

<style type = "text/css">
red {

color: red;

}
thick{

font-size:20px;
¥
.green {
color:green;

}

</style>
</head>

<body>
<p class = "red">This is red</p>
<p class = "thick">This is thick</p>
<p class = "green">This is green</p>

<p class = "thick green">This is thick and green</p>
</body>

</html>

This will produce the following result —

Inline Style Sheet

You can apply style sheet rules directly to any HTML element
using style attribute of the relevant tag. This should be done only when you are
interested to make a particular change in any HTML element only.

Rules defined inline with the element overrides the rules defined in an external
CSS file as well as the rules defined in <style> element.

Example

Let's re-write above example once again, but here we will write style sheet rules
along with the HTML elements using style attribute of those elements.

<IDOCTYPE html>
<html>

<head>
<title>HTML Inline CSS</title>
</head>

<body>

<p style = "color:red;">This is red</p>

<p style = "font-size:20px;">This is thick</p>

<p style = "color:green;">This is green</p>

<p style = "color:green;font-size:20px;">This is thick and green</p>
</body>

</html>

Page and site design considerations
Understand the medium

Readers experience Web pages in two ways: as a direct
medium where pages are read online and as a delivery
medium to access information that is downloaded into text
files or printed onto paper. Your expectations about how
readers will typically use your site should govern your page
design decisions. Documents to be read online should be
concise, with the amount of graphics carefully "tuned” to
the bandwidth available to your mainstream audience.
Documents that will most likely be printed and read offline
should appear on one page, and the page width should be
narrow enough to print easily on standard paper sizes.

Include fixed page elements

Each page should contain a title, an author, an institutional
affiliation, a revision date, copyright information, and a link
to the "home page" of your site. Web pages are often
printed or saved to disk, and without this information there
IS no easy way to determine where the document originated.
Think of each page in your site as a newspaper clipping, and
make sure that the information required to determine its
provenance is included.

Don't impose style

Don't set out to develop a "style™ for your site, and be
careful about simply importing the graphic elements of
another Web site or print publication to "decorate™ your
pages. The graphic and editorial style of your Web site
should evolve as a natural consequence of consistent and
appropriate handling of your content and page layout.

Maximize prime real estate

In page layout the top of the page is always the most
dominant location, but on Web pages the upper page is
especially important, because the top four inches of the page
are all that is visible on the typical display screen. Use this
space efficiently and effectively.

Use subtle colors

Subtle pastel shades of colors typically found in nature
make the best choices for background or minor elements.
Avoid bold, highly saturated primary colors except in
regions of maximum emphasis, and even there use them
cautiously.

Beware of graphic embellishments

Horizontal rules, graphic bullets, icons, and other visual
markers have their occasional uses, but apply each sparingly
(if at all) to avoid a patchy and confusing layout. The same
consideration applies to the larger sizes of type on Web
pages. One reason professional graphic designers are so
Impatient with plain HTML is that the H1 and H2 header
tags display in grotesquely large type on most Web
browsers. The tools of graphic emphasis are powerful and
should be used only in small doses for maximum effect.
Overuse of graphic emphasis leads to a "clown's pants"
effect in which everything is garish and nothing is
emphasized.

JAVA SCRIPT SYNTAX

JavaScript can be implemented using JavaScript statements that are placed within
the <script>... </script> HTML tags in a web page.

You can place the <script> tags, containing your JavaScript, anywhere within
your web page, but it is normally recommended that you should keep it within
the <head> tags.

The <script> tag alerts the browser program to start interpreting all the text
between these tags as a script. A simple syntax of your JavaScript will appear as
follows.

<script L
JavaScript cod
</script>

The script tag takes two important attributes —

« Language — This attribute specifies what scripting language you are using.
Typically, its value will be javascript. Although recent versions of HTML
(and XHTML, its successor) have phased out the use of this attribute.

« Type — This attribute is what is now recommended to indicate the scripting
language in use and its value should be set to "text/javascript".

So your JavaScript segment will look like —

<script language = "javascript” type = "text/javascript'>
JavaScript code
</script>

Your First JavaScript Code

Let us take a sample example to print out "Hello World". We added an optional
HTML comment that surrounds our JavaScript code. This is to save our code from
a browser that does not support JavaScript. The comment ends with a "//-->". Here
"/[" signifies a comment in JavaScript, so we add that to prevent a browser from
reading the end of the HTML comment as a piece of JavaScript code. Next, we
call a function document.write which writes a string into our HTML document.

This function can be used to write text, HTML, or both. Take a look at the
following code.

<html>
<body>
<script language = "javascript" type = "text/javascript">
<lI--
document.write("Hello World!")
/1-->
</script>
</body>

</html>

This code will produce the following result —
Hello World!

Whitespace and Line Breaks

JavaScript ignores spaces, tabs, and newlines that appear in JavaScript programs.
You can use spaces, tabs, and newlines freely in your program and you are free to
format and indent your programs in a neat and consistent way that makes the code
easy to read and understand.

Semicolons are Optional

Simple statements in JavaScript are generally followed by a semicolon character,
just as they are in C, C++, and Java. JavaScript, however, allows you to omit this
semicolon if each of your statements are placed on a separate line. For example,
the following code could be written without semicolons.

<script language = "javascript" type = "text/javascript'>

<I--
varl =10
var2 =20
/[-->
</script>

But when formatted in a single line as follows, you must use semicolons —

<script language = "javascript" type = "text/javascript">
<l--
varl = 10; var2 = 20;
/-->
</script>

Note — It is a good programming practice to use semicolons.
Case Sensitivity

JavaScript is a case-sensitive language. This means that the language keywords,
variables, function names, and any other identifiers must always be typed with a
consistent capitalization of letters.

So the identifiers Time and TIME will convey different meanings in JavaScript.

Comments in JavaScript

JavaScript supports both C-style and C++-style comments, Thus —

« Any text between a // and the end of a line is treated as a comment and is
ignored by JavaScript.

« Any text between the characters /* and */ is treated as a comment. This may
span multiple lines.

« JavaScript also recognizes the HTML comment opening sequence <!--,
JavaScript treats this as a single-line comment, just as it does the //
comment.

« The HTML comment closing sequence --> is not recognized by JavaScript
so it should be written as //-->.

Example

The following example shows how to use comments in JavaScript.

<script language = "javascript" type = "text/javascript'>
<I--
[/l This is a comment. It is similar to comments in C++

/*
* This is a multi-line comment in JavaScript
* |t is very similar to comments in C Programming
*/
/-->
</script>

JavaScript - Document Object Model or DOM

Every web page resides inside a browser window which can be considered as an
object.

A Document object represents the HTML document that is displayed in that
window. The Document object has various properties that refer to other objects
which allow access to and modification of document content.

The way a document content is accessed and modified is called the Document
Object Model, or DOM. The Objects are organized in a hierarchy. This
hierarchical structure applies to the organization of objects in a Web document.

« Window object — Top of the hierarchy. It is the outmost element of the
object hierarchy.

« Document object — Each HTML document that gets loaded into a window
becomes a document object. The document contains the contents of the
page.

« Form object — Everything enclosed in the <form>...</form> tags sets the
form object.

« Form control elements — The form object contains all the elements defined
for that object such as text fields, buttons, radio buttons, and checkboxes.

Here is a simple hierarchy of a few important objects —

Window
frame] parent self] top
I l
| history | | document I I location |
[.|
| link I | form | I anchor |
l I I l
I radio | | textarea l | button I I text I | cheokboxl
| password II reset H select I

There are several DOMs in existence. The following sections explain each of
these DOMs in detail and describe how you can use them to access and modify
document content.

o The Legacy DOM — This is the model which was introduced in early
versions of JavaScript language. It is well supported by all browsers, but

https://www.tutorialspoint.com/javascript/javascript_legacy_dom.htm

allows access only to certain key portions of documents, such as forms,
form elements, and images.

« The W3C DOM - This document object model allows access and
modification of all document content and is standardized by the World
Wide Web Consortium (W3C). This model is supported by almost all the
modern browsers.

« The IE4 DOM — This document object model was introduced in Version 4
of Microsoft's Internet Explorer browser. IE 5 and later versions include
support for most basic W3C DOM features.

DOM compatibility

If you want to write a script with the flexibility to use either W3C DOM or IE 4
DOM depending on their availability, then you can use a capability-testing
approach that first checks for the existence of a method or property to determine
whether the browser has the capability you desire. For example —

if (document.getElementByld) {

/' 1f the W3C method exists, use it
} else if (document.all) {

/[1f the all[] array exists, use it

}else {
/I Otherwise use the legacy DOM

}

Event Handling

What is an Event?

Change in the state of an object is known as Event, i.e., event describes the
change in the state of the source. Events are generated as a result of user
interaction with the graphical user interface components. For example, clicking on
a button, moving the mouse, entering a character through keyboard, selecting an
item from the list, and scrolling the page are the activities that causes an event to

occur.

https://www.tutorialspoint.com/javascript/javascript_w3c_dom.htm
https://www.tutorialspoint.com/javascript/javascript_ie4_dom.htm

Types of Event

The events can be broadly classified into two categories —

« Foreground Events — These events require direct interaction of the user.
They are generated as consequences of a person interacting with the
graphical components in the Graphical User Interface. For example,
clicking on a button, moving the mouse, entering a character through
keyboard, selecting an item from list, scrolling the page, etc.

. Background Events — These events require the interaction of the end user.
Operating system interrupts, hardware or software failure, timer expiration,
and operation completion are some examples of background events.

What is Event Handling?

Event Handling is the mechanism that controls the event and decides what should
happen if an event occurs. This mechanism has a code which is known as an event
handler, that is executed when an event occurs.

Java uses the Delegation Event Model to handle the events. This model defines
the standard mechanism to generate and handle the events.

The Delegation Event Model has the following key participants.

« Source — The source is an object on which the event occurs. Source is
responsible for providing information of the occurred event to it's handler.
Java provide us with classes for the source object.

« Listener — It is also known as event handler. The listener is responsible for
generating a response to an event. From the point of view of Java
implementation, the listener is also an object. The listener waits till it
receives an event. Once the event is received, the listener processes the
event and then returns.

The benefit of this approach is that the user interface logic is completely separated
from the logic that generates the event. The user interface element is able to
delegate the processing of an event to a separate piece of code.

In this model, the listener needs to be registered with the source object so that the
listener can receive the event notification. This is an efficient way of handling the
event because the event notifications are sent only to those listeners who want to
receive them.

Steps Involved in Event Handling

Step 1 — The user clicks the button and the event is generated.

Step 2 — The object of concerned event class is created automatically and
information about the source and the event get populated within the same object.

Step 3 — Event object is forwarded to the method of the registered listener class.

Step 4 — The method is gets executed and returns.
Points to Remember About the Listener

« In order to design a listener class, you have to develop some listener
interfaces. These Listener interfaces forecast some public abstract callback
methods, which must be implemented by the listener class.

« If you do not implement any of the predefined interfaces, then your class
cannot act as a listener class for a source object.
Callback Methods

These are the methods that are provided by API provider and are defined by the
application programmer and invoked by the application developer. Here the
callback methods represent an event method. In response to an event, java jre will
fire callback method. All such callback methods are provided in listener
interfaces.

If a component wants some listener to listen ot its events, the source must register
itself to the listener.

Event Handling Example

Create the following Java program using any editor of your choice in say D:/ >
SWING > com > tutorialspoint > gui >

SwingControlDemo.java

package com.tutorialspoint.gui;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class SwingControlDemo {
private JFrame mainFrame;

private JLabel headerLabel;
private JLabel statusLabel;
private JPanel controlPanel;

public SwingControlDemo(){
prepareGUI();

¥

public static void main(String[] args){
SwingControlDemo swingControlDemo
swingControlDemo.showEventDemo();

¥

private void prepareGUI(){
mainFrame = new JFrame(*Java SWING Examples");
mainFrame.setSize(400,400);
mainFrame.setLayout(new GridLayout(3, 1));

new

headerLabel = new JLabel(*",JLabel. CENTER);
statusLabel = new JLabel("",JLabel. CENTER);
statusLabel.setSize(350,100);

mainFrame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent windowEvent){
System.exit(0);

controlPanel = new JPanel();
controlPanel.setLayout(new FlowLayout());

mainFrame.add(headerLabel);
mainFrame.add(controlPanel);
mainFrame.add(statusLabel);
mainFrame.setVisible(true);

b

private void showEventDemo(){
headerLabel.setText("Control in action: Button™);

JButton okButton = new JButton("OK");
JButton submitButton = new JButton(*'Submit");
JButton cancelButton = new JButton("Cancel");

SwingCor

itrolDemo();

okButton.setActionCommand("OK");
submitButton.setActionCommand("Submit");
cancelButton.setActionCommand("Cancel");

okButton.addActionListener(new ButtonClickListener());
submitButton.addActionListener(new ButtonClickListener());
cancelButton.addActionListener(new ButtonClickListener());

controlPanel.add(okButton);
controlPanel.add(submitButton);
controlPanel.add(cancelButton);

mainFrame.setVisible(true);
¥
private class ButtonClickListener implements ActionListener{
public void actionPerformed(ActionEvent e) {
String command = e.getActionCommand();

if(command.equals("OK") {
statusLabel.setText("Ok Button clicked.");

} else if(command.equals("Submit*)) {
statusLabel.setText("Submit Button clicked.");

}else {
statusLabel.setText("Cancel Button clicked.");

¥

¥
¥

}

Compile the program using the command prompt. Go to D:/ > SWING and type
the following command.

D:\AWT>javac com\tutorialspoint\gui\SwingControlDemo.java

If no error occurs, it means the compilation is successful. Run the program using
the following command.

D:\AWT>java com.tutorialspoint.gui.SwingControlDemo
Verify the following output.

. Java SWING Examples @@@

Control in action: JButton

OK Submit Cancel

Ok Button clicked.

JavaScript | Output
JavaScript Output defines the ways to display the output of a given code. The
output can be display by using four different ways which are listed below:

o InnerHTML: It is used to access an element. It defines the HTML content.
Syntax:
document.getElementByld(id)

Example: This example uses innerHTML to display the data.

filter_none

edit

play_arrow
brightness_4
<IDOCTYPE html>

<html>

<head>
<title>
JavaScript Output using innerHTML
<[title>

</head>

<body>
<h1>GeeksforGeeks</h1>

<h2>
JavaScript Display Possibilities
Using innerHTML

</h2>

<p id="GFG"></p>

<I-- Script to uses innerHTML -->
<script>
document.getElementByld("GFG").innerHTML
=10*2;

</script>

</body>

</html>
Output:
document.write(): It is used for testing purpose.

Syntax:
document.write()

Example: This example uses document.write() property to display data.
filter_none

edit
play_arrow

brightness_4
<IDOCTYPE html>

<html>

<head>
<title>
JavaScript Output using document.write()
<[title>

</head>

<body>
<h1>GeeksforGeeks</h1>

<h2>

JavaScript Display Possibilities
Using document.write()

</h2>

<p id="GFG"></p>

<!-- Script to uses document.write() -->
<script>

document.write(10 * 2);
</script>

</body>

</html>

Output:

windowe.alert():It displays the content using an alertbox.

Syntax:
window.alert()

Example: This example uses window.alert() property to display data.
filter_none

edit

play_arrow
brightness_4
<IDOCTYPE html>

<html>

<head>
<title>
JavaScript Output using window.alert()
<[title>

</head>

<body>
<h1>GeeksforGeeks</h1>

<h2>
JavaScript Display Possibilities
Using window:.alert()

</h2>

<p id="GFG"></p>

<I-- Script to use window.alert() -->
<script>

window.alert(10 * 2);
</script>

</body>

</html>

Output:

console.log(): It is used for debugging purposes.
Syntax:
console.log()

Example: This example uses console.log() property to display data.
filter_none

edit
play_arrow

brightness_4
<IDOCTYPE html>

<html>

<head>
<title>
JavaScript Output using innerHTML
<[title>

</head>

<body>
<h1>GeeksforGeeks</h1>

<h2>

JavaScript Display Possibilities

Using console.log()

</h2>

<p id="GFG"></p>

<I-- Script to use console.log() -->
<script>

console.log(10*2);
</script>

</body>

</html>

JSP - Form Handling

The Methods in Form Processing

Let us now discuss the methods in Form Processing.

GET method

The GET method sends the encoded user information appended to the page

request. The page and the encoded information are separated by the ? character as
follows —

http://www.test.com/hello?keyl=valuel&key2=value2

The GET method is the default method to pass information from the browser to
the web server and it produces a long string that appears in your

http://www.test.com/hello?key1=value1&key2=value2

browser's Location:box. It is recommended that the GET method is better not
used. if you have password or other sensitive information to pass to the server.

The GET method has size limitation: only 1024 characters can be in a request
string.

This information is passed using QUERY_STRING header and will be
accessible through QUERY _STRING environment variable which can be handled
using getQueryString() and getParameter() methods of request object.

POST method

A generally more reliable method of passing information to a backend program is
the POST method.

This method packages the information in exactly the same way as the GET
method, but instead of sending it as a text string after a ? in the URL it sends it as
a separate message. This message comes to the backend program in the form of
the standard input which you can parse and use for your processing.

JSP handles this type of requests using getParameter() method to read simple
parameters and getlnputStream() method to read binary data stream coming
from the client.

Reading Form Data using JSP
JSP handles form data parsing automatically using the following methods

depending on the situation —

. getParameter() — You call request.getParameter() method to get the
value of a form parameter.

o getParameterValues() — Call this method if the parameter appears more
than once and returns multiple values, for example checkbox.

« getParameterNames() — Call this method if you want a complete list of all
parameters in the current request.

« getlnputStream() — Call this method to read binary data stream coming
from the client.

GET Method Example Using URL

The following URL will pass two values to HelloForm program using the GET
method.

http://localhost:8080/main.jsp?first_name=ZARA&last_name=ALlI

Below is the main.jsp JSP program to handle input given by web browser. We are
going to use the getParameter() method which makes it very easy to access the
passed information —

<html>
<head>
<title>Using GET Method to Read Form Data</title>
</head>

<body>
<h1>Using GET Method to Read Form Data</h1>

<p>First Name:
<%= request.getParameter(*'first_name")%>
</p>
<p>Last Name:
<%= request.getParameter(*'last_name")%>
</p>

</body>
</html>

Now
type http://localhost:8080/main.jsp?first name=ZARA&Ilast name=ALI in

your browser's Location:box. This will generate the following result —

Using GET Method to Read Form Data
. First Name: ZARA
o Last Name: ALI

GET Method Example Using Form

Following is an example that passes two values using the HTML FORM and the
submit button. We are going to use the same JSP main.jsp to handle this input.

<htmI>
<body>

<form action = "main.jsp" method = "GET">
First Name: <input type = "text" name = "first_name">

Last Name: <input type = "text" name = "last_name" />
<input type = "submit" value = "Submit" />

</form>
</body>
</html>
Keep this HTML in a file Hello.htm and put it in <Tomcat-installation-
directory>/webapps/ROOT directory. When you would

access http://localhost:8080/Hello.htm, you will receive the following output.

First Name:
Last Name:

< p>Try to enter the First Name and the Last Name and then click the submit
button to see the result on your local machine where tomcat is running. Based on
the input provided, it will generate similar result as mentioned in the above
example.

POST Method Example Using Form

Let us do a little modification in the above JSP to handle both the GET and the
POST method. Below is the main.jsp JSP program to handle the input given by
web browser using the GET or the POST methods.

Infact there is no change in the above JSP because the only way of passing
parameters is changed and no binary data is being passed to the JSP program. File
handling related concepts will be explained in separate chapter where we need to
read the binary data stream.

<html>
<head>
<title>Using GET and POST Method to Read Form Data</title>
</head>

<body>
<center>
<h1>Using POST Method to Read Form Data</h1>

<p>First Name:
<%= request.getParameter("first_name")%>
</p>
<p>Last Name:
<%= request.getParameter(*'last_name")%>
</p>

</body>
</html>

Following is the content of the Hello.htm file —

<html>
<body>

<form action = "main.jsp" method = "POST">
First Name: <input type = "text" name = "first_name">

Last Name: <input type = "text" name = "last_name" />
<input type = "submit" value = "Submit" />

</form>

</body>

</html>

Let us now keep mainjsp and hellohtm in <Tomcat-
installationdirectory>/webapps/ROOT directory. When you

access http://localhost:8080/Hello.htm, you will receive the following output.

First Name:
Last Name:

Try to enter the First and the Last Name and then click the submit button to see
the result on your local machine where tomcat is running.

Based on the input provided, you will receive similar results as in the above
examples.

Passing Checkbox Data to JSP Program

Checkboxes are used when more than one option is required to be selected.

Following is an example HTML code, CheckBox.htm, for a form with two
checkboxes.

<html>
<body>

<form action = "main.jsp" method = "POST" target ="_blank">
<input type = "checkbox" name = "maths" checked = "checked" /> Maths
<input type = "checkbox" name = "physics" /> Physics
<input type = "checkbox" name = "chemistry" checked = "checked" />
Chemistry

<input type = "submit" value = "Select Subject"” />
</form>

</body>
</html>

The above code will generate the following result —

¥ Maths' Physics™ Chemistry

Following is main.jsp JSP program to handle the input given by the web browser
for the checkbox button.

<html>
<head>

<title>Reading Checkbox Data</title>
</head>

<body>
<h1>Reading Checkbox Data</h1>

<p>Maths Flag:
<%= request.getParameter("maths')%>
</p>
<p>Physics Flag:

<%= request.getParameter(*"'physics")%>
</p>

<p>Chemistry Flag:

<%= request.getParameter(*'chemistry")%>
<[p>

</body>
</html>

The above program will generate the following result —

Reading Checkbox Data

« Maths Flag :: on
« Physics Flag:: null

« Chemistry Flag:: on

Reading All Form Parameters

Following is a generic example which uses getParameterNames() method of
HttpServiletRequest to read all the available form parameters. This method returns
an Enumeration that contains the parameter names in an unspecified order.

Once we have an Enumeration, we can loop down the Enumeration in the
standard manner, using the hasMoreElements() method to determine when to
stop and using the nextElement() method to get each parameter name.

<%@ page import = "java.io.* java.util.*" %>

<html>
<head>
<title>HTTP Header Request Example</title>
</head>

<body>
<center>
<h2>HTTP Header Request Example</h2>

<table width = "100%" border = "1" align = "center">
<tr bgcolor = "#949494">
<th>Param Name</th>

<th>Param Value(s)</th>
</tr>

<%

Enumeration paramNames = request.getParameterNames();
while(paramNames.hasMoreElements()) {

String paramName = (String)paramNames.nextElement();
out.print("<tr><td>" + paramName + "</td>\n");

String paramValue = request.getHeader(paramName);
out.printin(<td> " + paramValue + "</td></tr>\n");

}

00>
</table>
</center>

</body>
</html>

Following is the content of the Hello.htm —

<html>
<body>

<form action = "main.jsp" method = "POST" target ="_blank">
<input type = "checkbox" name = "maths" checked = "checked" /> Maths
<input type = "checkbox" name = "physics" /> Physics
<input type = "checkbox" name = "chemistry" checked

<input type = "submit™ value = "Select Subject" />
</form>

= "checked" /> Chem

</body>
</html>

Now try calling JSP using the above Hello.htm; this would generate a result
something like as below based on the provided input —

Reading All Form Parameters

Param Name Param Value(s)

Maths on

Chemistry on

You can try the above JSP to read any other form's data which is having other
objects like text box, radio button or dropdown, etc.

COOKIES

Cookies are text files stored on the client computer and they are kept for various
information tracking purpose. Java Servlets transparently supports HTTP cookies.

There are three steps involved in identifying returning users —

« Server script sends a set of cookies to the browser. For example name, age,
or identification number etc.

« Browser stores this information on local machine for future use.

« When next time browser sends any request to web server then it sends those
cookies information to the server and server uses that information to
identify the user.

This chapter will teach you how to set or reset cookies, how to access them and
how to delete them.

The Anatomy of a Cookie

Cookies are usually set in an HTTP header (although JavaScript can also set a
cookie directly on a browser). A servlet that sets a cookie might send headers that
look something like this —

HTTP/1.1 200 OK

Date: Fri, 04 Feb 2000 21:03:38 GMT

Server: Apache/1.3.9 (UNIX) PHP/4.0b3

Set-Cookie: name = xyz; expires = Friday, 04-Feb-07 22:03:38 GMT;
path = /; domain = tutorialspoint.com

Connection: close

Content-Type: text/ntml

As you can see, the Set-Cookie header contains a name value pair, a GMT date, a
path and a domain. The name and value will be URL encoded. The expires field is
an instruction to the browser to "forget" the cookie after the given time and date.

If the browser is configured to store cookies, it will then keep this information
until the expiry date. If the user points the browser at any page that matches the
path and domain of the cookie, it will resend the cookie to the server. The
browser's headers might look something like this —

GET /HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/4.6 (X11; I; Linux 2.2.6-15apmac ppc)

Host: zink.demon.co.uk:1126

Accept: image/gif, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: is0-8859-1,* utf-8

Cookie: name = xyz

A servlet will then have access to the cookie through the request
method request.getCookies() which returns an array of Cookie objects.

Servlet Cookies Methods

Following is the list of useful methods which you can use while manipulating
cookies in servlet.

Sr.No. Method & Description

public void setDomain(String pattern)

1
This method sets the domain to which cookie applies, for
example tutorialspoint.com.
public String getDomain()

2

This method gets the domain to which cookie applies, for
example tutorialspoint.com.

public void setMaxAge(int expiry)

3 This method sets how much time (in seconds) should elapse
before the cookie expires. If you don't set this, the cookie will
last only for the current session.

10

11

public int getMaxAge()

This method returns the maximum age of the cookie, specified
In seconds, By default, -1 indicating the cookie will persist
until browser shutdown.

public String getName()

This method returns the name of the cookie. The name cannot
be changed after creation.

public void setValue(String newValue)
This method sets the value associated with the cookie

public String getValue()
This method gets the value associated with the cookie.

public void setPath(String uri)

This method sets the path to which this cookie applies. If you
don't specify a path, the cookie is returned for all URLSs in the
same directory as the current page as well as all
subdirectories.

public String getPath()
This method gets the path to which this cookie applies.

public void setSecure(boolean flag)

This method sets the boolean value indicating whether the
cookie should only be sent over encrypted (i.e. SSL)
connections.

public void setComment(String purpose)

This method specifies a comment that describes a cookie's
purpose. The comment is useful if the browser presents the

cookie to the user.

public String getComment()

12 . .
This method returns the comment describing the purpose of

this cookie, or null if the cookie has no comment.

Setting Cookies with Servlet

Setting cookies with servlet involves three steps —

(1) Creating a Cookie object — You call the Cookie constructor with a cookie
name and a cookie value, both of which are strings.

Cookie cookie = new Cookie("key","value");

Keep in mind, neither the name nor the value should contain white space or any of
the following characters —

[10)=."1?7@:;

(2) Setting the maximum age — You use setMaxAge to specify how long (in
seconds) the cookie should be valid. Following would set up a cookie for 24
hours.

cookie.setMaxAge(60 * 60 * 24);

(3) Sending the Cookie into the HTTP response headers — You use
response.addCookie to add cookies in the HTTP response header as follows —

response.addCookie(cookie);
Example

Let us modify our Form Example to set the cookies for first and last name.

/I Import required java libraries
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

Il Extend HttpServlet class
public class HelloForm extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

https://www.tutorialspoint.com/servlets/servlets-form-data.htm

throws ServletException, IOException {

I/l Create cookies for first and last names.

Cookie firstName = new Cookie("first_name",
request.getParameter(*'first_name"));

Cookie lastName = new Cookie("last_name",
request.getParameter("last_name"));

I/l Set expiry date after 24 Hrs for both the cookies.
firstName.setMaxAge(60*60*24);
lastName.setMaxAge(60*60*24);

/[Add both the cookies in the response header.
response.addCookie(firstName);
response.addCookie(lastName);

Il Set response content type
response.setContentType("text/ntml");

PrintWriter out = response.getWriter();
String title = "Setting Cookies Example™;
String docType =
"<Idoctype html public \"-//w3c//dtd html 4.0 " + "transitional//en\">\n";

out.printin(docType +
"<htmI>\n" +
"<head>
<title>" + title + "</title>
</head>\n" +

"<body bgcolor = \"#f0fOfO\">\n" +
"<hl align = \"center\">" + title + "</h1>\n" +
"\n" +
" First Name:"
+ request.getParameter("first_name") + "\n" +
" Last Name: "
+ request.getParameter(last name") + "\n" +
"\n" +
"</body>
</html>"

);
}
}

Compile the above servlet HelloForm and create appropriate entry in web.xml
file and finally try following HTML page to call servlet.

<html>
<body>
<form action = "HelloForm" method = "GET">
First Name: <input type = "text" name = "first_name">

Last Name: <input type = "text" name = "last_name" />
<input type = "submit" value = "Submit" />
</form>
</body>
</html>

Keep above HTML content in a file Hello.htm and put it in <Tomcat-
installationdirectory>/webapps/ROOT directory. When you would
access http://localhost:8080/Hello.htm, here is the actual output of the above form.

First Name:
Last Name:

Try to enter First Name and Last Name and then click submit button. This would
display first name and last name on your screen and same time it would set two
cookies firstName and lastName which would be passed back to the server when
next time you would press Submit button.

Next section would explain you how you would access these cookies back in your
web application.

Reading Cookies with Servlet

To read cookies, you need to create an array of javax.servlet.http.Cookie objects
by calling the getCookies() method of HttpServletRequest. Then cycle through
the array, and use getName() and getValue() methods to access each cookie and
associated value.

Example

Let us read cookies which we have set in previous example —

/I Import required java libraries
import java.io.*;

import javax.servlet.*;
Import javax.servlet.http.*;

/I Extend HttpServlet class
public class ReadCookies extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

Cookie cookie = null;
Cookie[] cookies = null;

/I Get an array of Cookies associated with this domain
cookies = request.getCookies();

Il Set response content type
response.setContentType("text/html™);

PrintWriter out = response.getWriter();

String title = "Reading Cookies Example";

String docType =
"<ldoctype html public \"-//w3c//dtd html 40 " +
"transitional//en\">\n";

out.printin(docType +
"<htmlI>\n" +
"<head><title>" + title + "</title></head>\n" +
"<body bgcolor = \"#f0fOfO\">\n");

if(cookies !=null) {
out.println("<h2> Found Cookies Name and Value</h2>");

for (int i = 0; i < cookies.length; i++) {
cookie = cookies|[i];
out.print("Name : " + cookie.getName() + ", ");

out.print("Value: " + cookie.getValue() + "
");
h
}else {
out.printIn("<h2>No cookies founds</h2>");
hy
out.printin("</body>");
out.printin("</htmi>");

}

}

Compile above servlet ReadCookies and create appropriate entry in web.xml file.
If you would have set first name cookie as "John" and last name cookie as

"Player" then running http://localhost:8080/ReadCookies would display the
following result —

Found Cookies Name and Value

Name : first name, Value: John
Name : last name, Value: Player
Delete Cookies with Servlet

To delete cookies is very simple. If you want to delete a cookie then you simply
need to follow up following three steps —
« Read an already existing cookie and store it in Cookie object.

« Set cookie age as zero using setMaxAge() method to delete an existing
cookie

« Add this cookie back into response header.

Example

The following example would delete and existing cookie named "first_name" and
when you would run ReadCookies servlet next time it would return null value for
first_name.

/I Import required java libraries
import java.io.*;

Import javax.servlet.*;

Import javax.servlet.http.*;

/I Extend HttpServlet class
public class DeleteCookies extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

Cookie cookie = null;
Cookie[] cookies = null;

/I Get an array of Cookies associated with this domain
cookies = request.getCookies();

Il Set response content type
response.setContentType("text/html™);

PrintWriter out = response.getWriter();
String title = "Delete Cookies Example";
String docType =
"<ldoctype html public \"-//w3c//dtd html 4.0 " + “transitional//en\">\n";

out.printin(docType +
"<htmlI>\n" +
"<head><title>" + title + "</title></head>\n" +
"<body bgcolor = \"#f0fOfO\">\n");

If(cookies '=null) {
out.printIn("<h2> Cookies Name and Value</h2>");

for (int i = 0; i < cookies.length; i++) {
cookie = cookies][i];

if((cookie.getName()).compareTo("first name”) == 0) {
cookie.setMaxAge(0);
response.addCookie(cookie);
out.print("Deleted cookie : " + cookie.getName() + "
");
b
out.print("Name : " + cookie.getName() + ", ");
out.print(Value: " + cookie.getValue()+"
");

}

}else {

out.printin("<h2>No cookies founds</h2>");
}
out.printin('</body>");
out.printin(*"</html>");
}
}

Compile above servlet DeleteCookies and create appropriate entry in web.xml
file. Now running http://localhost:8080/DeleteCookies would display the
following result —

Cookies Name and Value

Deleted cookie : first_name

Name : first_name, Value: John

Name : last_name, Value: Player

Now try to run http://localhost:8080/ReadCookies and it would display only one
cookie as follows —

Found Cookies Name and Value

Name : last_name, Value: Player

You can delete your cookies in Internet Explorer manually. Start at the Tools
menu and select Internet Options. To delete all cookies, press Delete Cookies.

Hidden fields and Objects

HTML DOM Input Hidden Object

Input Hidden Object

The Input Hidden object represents an HTML <input> element with
type="hidden".

Access an Input Hidden Object

You can access an <input> element with type="hidden" by using
getElementByld():

Example

var x = document.getElementByld("myInput");

Tip: You can also access <input type="hidden"> by searching through
the elements collection of a form.

Create an Input Hidden Object

You can create an <input> element with type="hidden" by using the
document.createElement() method:

Example

var X = document.createElement("INPUT");
x.setAttribute("type", "hidden");

Input Hidden Object Properties

Property Description

defaultValue Sets or returns the default value of the hidden input field

https://www.w3schools.com/jsref/coll_form_elements.asp

form Returns a reference to the form that contains the hidden input field

name Sets or returns the value of the name attribute of the hidden input field
type Returns which type of form element a hidden input field is
value Sets or returns the value of the value attribute of the hidden input field

HTML DOM Input Image Object
Input Image Object

The Input Image object represents an HTML <input> element with type="image".

Access an Input Image Object

You can access an <input> element with type="image" by using
getElementByld():

var x = document.getElementByld("myIlmage");

Tip: You can also access <input type="image"> by searching through
the elements collection of a form.

Create an Input Image Object

You can create an <input> element with type="image"” by using the
document.createElement() method:

var X = document.createElement("INPUT");
X.setAttribute("type", "image");

Input Image Object Properties

https://www.w3schools.com/jsref/prop_hidden_form.asp
https://www.w3schools.com/jsref/prop_hidden_name.asp
https://www.w3schools.com/jsref/prop_hidden_type.asp
https://www.w3schools.com/jsref/prop_hidden_value.asp
https://www.w3schools.com/jsref/coll_form_elements.asp

Property Description

Alt Sets or returns the value of the alt attribute of an input image

Autofocus Sets or returns whether an input image should automatically get focus when
the page loads

defaultValue Sets or returns the default value of an input image

Disabled Sets or returns whether an input image is disabled, or not

Form Returns a reference to the form that contains the input image
formAction Sets or returns the value of the formaction attribute of an input image
formEnctype Sets or returns the value of the formenctype attribute of an input image
formMethod Sets or returns the value of the formmethod attribute of an input image

formNoValidate Sets or returns whether the form-data should be validated or not, on
submission

formTarget Sets or returns the value of the formtarget attribute an input image

Height Sets or returns the value of the height attribute of the input image

Name Sets or returns the value of the name attribute of an input image
Src Sets or returns the value of the src attribute of the input image
Type Returns which type of form element the input image is

Value Sets or returns the value of the value attribute of an input image
Width Sets or returns the value of the width attribute of the input image

Java language was developed by Sun Microsystems in 1995. In subsequent years,
the language has become the backbone of millions of applications across multiple
platforms including Windows, Macintosh and UNIX-based desktops, Android-
based mobiles, embedded systems and enterprise solutions. According to Oracle
(that acquired Sun Microsystems in 2010), Java now runs on more than 3 billion
devices.

Types of Applications that Run on Java

1. Desktop GUI Applications:

Java provides GUI development through various means like Abstract Windowing
Toolkit (AWT), Swing and JavaFX. While AWT contains a number of pre-
constructed components such as menu, button, list, and numerous third-party
components, Swing, a GUI widget toolkit, additionally provides certain advanced
components like trees, tables, scroll panes, tabbed panel and lists. JavaFX, a set of

graphics and media packages, provides Swing interoperability, 3D graphic features
and self-contained deployment model which facilitates quick scripting of Java
applets and applications.

2. Mobile Applications:

Java Platform, Micro Edition (Java ME or J2ME) is a cross-platform framework to
build applications that run across all Java supported devices, including feature
phones and smart phones. Further, applications for Android, one of the most
popular mobile operating systems, are usually scripted in Java using the Android
Software Development Kit (SDK) or other environments.

3. Embedded Systems:

Embedded systems, ranging from tiny chips to specialized computers, are
components of larger electromechanical systems performing dedicated tasks.
Several devices, such as SIM cards, blue-ray disk players, utility meters and
televisions, use embedded Java technologies. According to Oracle, 100% of Blu-
ray Disc Players and 125 million TV devices employ Java.

4. Web Applications:

Java provides support for web applications through Servlets, Struts or JSPs. The
easy programming and higher security offered by the programming language has
allowed a large number of government applications for health, social security,
education and insurance to be based on Java. Java also finds application in
development of eCommerce web applications using open-source eCommerce
platforms, such as Broadleaf.

5. Web Servers and Application Servers:

The Java ecosystem today contains multiple Java web servers and application
servers. While Apache Tomcat, Simple, Jo!, Rimfaxe Web Server (RWS) and
Project Jigsaw dominate the web server space, WebLogic, WebSphere, and Jboss
EAP dominate commercial application server space.

6. Enterprise Applications:

Java Enterprise Edition (Java EE) is a popular platform that provides API and
runtime environment for scripting and running enterprise software, including

network applications and web-services. Oracle claims Java is running in 97% of
enterprise computers. The higher performance guarantee and faster computing in
Java has resulted in high frequency trading systems like Murex to be scripted in the
language. It is also the backbone for a variety of banking applications which have
Java running from front user end to back server end.

7. Scientific Applications:

Java is the choice of many software developers for writing applications involving
scientific calculations and mathematical operations. These programs are generally
considered to be fast and secure, have a higher degree of portability and low
maintenance. Applications like MATLAB use Java both for interacting user
interface and as part of the core system.

UNIT-3

What is Java Server Pages?

Java Server Pages (JSP) is a technology for developing Webpages that supports
dynamic content. This helps developers insert java code in HTML pages by
making use of special JSP tags, most of which start with <% and end with %>.

A Java Server Pages component is a type of Java servlet that is designed to fulfill
the role of a user interface for a Java web application. Web developers write JSPs
as text files that combine HTML or XHTML code, XML elements, and embedded
JSP actions and commands.

Using JSP, you can collect input from users through Webpage forms, present
records from a database or another source, and create Webpages dynamically.

JSP tags can be used for a variety of purposes, such as retrieving information from
a database or registering user preferences, accessing JavaBeans components,
passing control between pages, and sharing information between requests, pages
etc.

Why Use JSP?

JavaServer Pages often serve the same purpose as programs implemented using
the Common Gateway Interface (CGI). But JSP offers several advantages in
comparison with the CGI.

« Performance is significantly better because JSP allows embedding Dynamic
Elements in HTML Pages itself instead of having separate CGl files.

. JSP are always compiled before they are processed by the server unlike
CGI/Perl which requires the server to load an interpreter and the target
script each time the page is requested.

« JavaServer Pages are built on top of the Java Servlets API, so like Servlets,
JSP also has access to all the powerful Enterprise Java APIs,
including JDBC, JNDI, EJB, JAXP, etc.

« JSP pages can be used in combination with servlets that handle the business
logic, the model supported by Java servlet template engines.

Finally, JSP is an integral part of Java EE, a complete platform for enterprise class
applications. This means that JSP can play a part in the simplest applications to
the most complex and demanding.

Advantages of JSP

Following table lists out the other advantages of using JSP over other technologies

vs. Active Server Pages (ASP)

The advantages of JSP are twofold. First, the dynamic part is written in Java, not
Visual Basic or other MS specific language, so it is more powerful and easier to
use. Second, it is portable to other operating systems and non-Microsoft Web
Servers.

vS. Pure Servlets

It is more convenient to write (and to modify!) regular HTML than to have plenty
of println statements that generate the HTML.

vs. Server-Side Includes (SSI)

SSlI is really only intended for simple inclusions, not for “real” programs that use
form data, make database connections, and the like.

vs. JavaScript

JavaScript can generate HTML dynamically on the client but can hardly interact
with the web server to perform complex tasks like database access and image
processing etc.

vs. Static HTML

Regular HTML, of course, cannot contain dynamic information.

Common Gateway Interface

Common Gateway Interface (CGl)

The Common Gateway Interface (CGI) provides the middleware between
WWW servers and external databases and information sources. The World Wide
Web Consortium (W3C) defined the Common Gateway Interface (CGI) and also

defined how a program interacts with a Hyper Text Transfer Protocol (HTTP)
server. The Web server typically passes the form information to a small application
program that processes the data and may send back a confirmation message. This
process or convention for passing data back and forth between the server and the
application is called the common gateway interface (CGlI).

Features of CGI:

. Itisavery well defined and supported standard.

« CGlI scripts are generally written in either Perl, C, or maybe just a simple shell

script.

« CGlisatechnology that interfaces with HTML.

« CGl is the best method to create a counter because it is currently the quickest

« CGl standard is generally the most compatible with today’s browsers

Advantages of CGl:
« The advanced tasks are currently a lot easier to perform in CGI than in Java.
« ltis always easier to use the code already written than to write your own.
« CGI specifies that the programs can be written in any language, and onany
platform, as long as they conform to the specification.
« CGIl-based counters and CGI code to perform simple tasks are available in
plenty.

Disadvantages of CGl:
There are some disadvantages of CGI which are given below:
« In Common Gateway Interface each page load incurs overhead by having to
load the programs into memory.
. Generally, data cannot be easily cached in memory between page loads.
« There is a huge existing code base, much of it in Perl.
« CGl uses up a lot of processing time.

ASP

ASP (Active Server Page) is a Microsoft technology that has been widely used by
many web businesses. Similar to JSP, PHP or CGl, it enables a dynamic HTML
page to be displayed from the server when the page is requested from the client
browser. With ASP, developers can combine HTML pages, script commands and
COM components to generate dynamic and interactive web server application.
ASP can be developed using default scripting language, VBScript, or any language
that support ActiveX scripting.

ASP has been integrated with the Microsoft 11S (Internet Information Server)
platform. The ASP engine is started on the web server when a file with an .asp
extension is used. This engine resides in a DLL file called asp.dll that runs in
memory along with I1S. You can develop ASP pages through Microsoft FrontPage
and test your ASP pages on IIS running on a local Windows NT or Windows 2000
workstation before you upload them to the server.

ASP .NET is a Microsoft programming framework that built on the common
language runtime on the web server to build powerful web applications. Both ASP
and ASP .NET applications can run together on a server independently because
they have different file extension (.asp and .aspx) and different configuration
models (registry versus XML-based configuration files). In additional, these two
systems have totally separate processing engines.

Since ASP and ASP .NET are Microsoft technology, you will need to find a web
hosting provider that support Microsoft Window Server in order to host your
website created in ASP .NET or ASP. But, you can run ASP applications on
Linux-based server environment too. Application such as " Sun ChiliSoft ASP for
Linux" if installed on the Linux server will be able to support ASP application.

WWW and 1I/O operations on it

Overview

WWW stands for World Wide Web. A technical definition of the World Wide
Web is : all the resources and users on the Internet that are using the Hypertext
Transfer Protocol (HTTP).

A broader definition comes from the organization that Web inventor Tim
Berners-Lee helped found, the World Wide Web Consortium (W3C).

The World Wide Web is the universe of network-accessible information, an
embodiment of human knowledge.

In simple terms, The World Wide Web is a way of exchanging information
between computers on the Internet, tying them together into a vast collection of
interactive multimedia resources.

Internet and Web is not the same thing: Web uses internet to pass over the
information.

http://wwws.sun.com/software/chilisoft/

Evolution

World Wide Web was created by Timothy Berners Leein 1989
at CERN in Geneva. World Wide Web came into existence as a proposal by him,

to allow researchers to work together effectively and efficiently
at CERN. Eventually it became World Wide Web.

The following diagram briefly defines evolution of World Wide Web:

| web2.0

*Social Media
*Keyword search
*Rich user experience
*Tagging

WWW Architecture

WWW architecture is divided into several layers as shown in the following
diagram:

Userinterface and applications

AydesgoidAid

Identifiers: URI Character Set: UNICODE

Identifiers and Character Set

Uniform Resource Identifier (URI) is used to uniquely identify resources on the
web and UNICODE makes it possible to built web pages that can be read and
write in human languages.

Syntax

XML (Extensible Markup Language) helps to define common syntax in
semantic web.

Data Interchange

Resource Description Framework (RDF) framework helps in defining core
representation of data for web. RDF represents data about resource in graph form.

Taxonomies

RDF Schema (RDFS) allows more standardized description of taxonomies and
other ontological constructs.

Ontologies

Web Ontology Language (OWL) offers more constructs over RDFS. It comes in
following three versions:

« OWL Lite for taxonomies and simple constraints.
« OWL DL for full description logic support.
« OWL for more syntactic freedom of RDF

Rules

RIF and SWRL offers rules beyond the constructs that are available

from RDFs and OWL. Simple Protocol and RDF Query Language
(SPARQL) is SQL like language used for querying RDF data and OWL
Ontologies.

Proof

All semantic and rules that are executed at layers below Proof and their result will
be used to prove deductions.

Cryptography

Cryptography means such as digital signature for verification of the origin of
sources is used.

User Interface and Applications

On the top of layer User interface and Applications layer is built for user
interaction.

WWW Operation

WWW works on client- server approach. Following steps explains how the web
works:

1. User enters the URL (say, http://www.tutorialspoint.com) of the web page
in the address bar of web browser.

2. Then browser requests the Domain Name Server for the IP address
corresponding to www.tutorialspoint.com.

3. After receiving IP address, browser sends the request for web page to the
web server using HTTP protocol which specifies the way the browser and
web server communicates.

4. Then web server receives request using HTTP protocol and checks its
search for the requested web page. If found it returns it back to the web
browser and close the HTTP connection.

5. Now the web browser receives the web page, It interprets it and display the
contents of web page in web browser’s window.

Request for web page ____ Requestforweb page
% .~ ¥ X >

< |‘
= veorne

internet _

Web Page
Web browser HTMLfile HTML file Web Server
(Client)
Future

There had been a rapid development in field of web. It has its impact in almost
every area such as education, research, technology, commerce, marketing etc. So
the future of web is almost unpredictable.

Apart from huge development in field of WWW, there are also some technical
issues that W3 consortium has to cope up with.

User Interface

Work on higher quality presentation of 3-D information is under deveopment. The
W3 Consortium is also looking forward to enhance the web to full fill
requirements of global communities which would include all regional languages
and writing systems.

http://www.tutorialspoint.com/

Technology

Work on privacy and security is under way. This would include hiding
information, accounting, access control, integrity and risk management.

Architecture

There has been huge growth in field of web which may lead to overload the
internet and degrade its performance. Hence more better protocol are required to
be developed.

Form validation using HTML and JavaScript

Forms are used in webpages for the user to enter their required details that are
further send it to the server for processing. A form is also known as web form or
HTML form. Examples of form use are prevalent in e-commerce websites, online
banking, online surveys to name a few

Syntax for form in HTML

<body>
<hl style="text-align: center"> REGISTRATION FORM </h1>

<form name="RegForm" action="/submit.php” onsubmit="return
GEEKFORGEEKS()" method="post">

<p>Name: <input type="text" size=65 name="Name"> </p>

<p> Address: <input type="text" size=65 name="Address"> </p>

<p>E-mail Address: <input type="text" size=65 name="EMail"> </p>

<p>Password: <input type="text" size=65 name="Password"> </p>

<p>Telephone: <input type="text" size=65 name="Telephone"> </p>

<p>SELECT YOUR COURSE

<select type="text" value=""" name="Subject">
<option>BTECH</option>
<option>BBA</option>
<option>BCA</option>
<option>B.COM</option>
<option>GEEKFORGEEKS</option>
</select></p>

<p>Comments: <textarea cols="55" name="Comment"> </textarea></p>
<p><input type="submit" value="send" name="Submit">
<input type="reset" value="Reset" name="Reset">
</p>
</form>

</body>

Validating a form :

The data entered into a form needs to be in the right format and certain fields need
to be filled in order to effectively use the submitted form. Username, password,
contact information are some details that are mandatory in forms and thus need to
be provided by the user.

Form validation using HTML and JavaScript

Forms are used in webpages for the user to enter their required details that are
further send it to the server for processing. A form is also known as web form or
HTML form. Examples of form use are prevalent in e-commerce websites, online
banking, online surveys to name a few

Syntax for form in HTML

<body>
<hl style="text-align: center"> REGISTRATION FORM </h1>

<form name="RegForm" action="/submit.php" onsubmit="return
GEEKFORGEEKS()" method="post">

<p>Name: <input type="text" size=65 name="Name"> </p>

<p> Address: <input type="text" size=65 name="Address"> </p>

<p>E-mail Address: <input type="text" size=65 name="EMail"> </p>

<p>Password: <input type="text" size=65 name="Password"> </p>

<p>Telephone: <input type="text" size=65 name="Telephone"> </p>

<p>SELECT YOUR COURSE

<select type="text" value="" name="Subject">

<option>BTECH</option>

<option>BBA</option>

<option>BCA</option>

<option>B.COMc</option>

<option>GEEKFORGEEKS</option>

</select></p>

<p>Comments: <textarea cols="55" name="Comment"> </textarea></p>
<p><input type="submit" value="send" name="Submit">

<input type="reset" value="Reset" nhame="Reset">

</p>

</form>
</body>

Validating a form :

The data entered into a form needs to be in the right format and certain fields need
to be filled in order to effectively use the submitted form. Username, password,
contact information are some details that are mandatory in forms and thus need to
be provided by the user.

Below is a code in HTML, CSS and JavaScript to validate a form .
HTML is used to create the form.

JavasScript to validate the form.

CSS to design the layout of the form.

Form validation :

<script>
function GEEKFORGEEKS()
{
var name = document.forms['RegForm"]["Name"];
var email = document.forms["RegForm"]["EMail"];
var phone = document.forms["RegForm"]["Telephone"];
var what = document.forms["RegForm"]["'Subject"];
var password = document.forms["RegForm"]["Password"];

var address = document.forms["RegForm"]["Address"];

if (name.value =="")

{

window.alert("Please enter your name.");
name.focus();

return false;

if (address.value ==""")

{
window.alert("Please enter your address.");
address.focus();

return false;

if (email.value =="")

{

window.alert("Please enter a valid e-mail address.");
email.focus();

return false;

if (phone.value =="")

{

window.alert("Please enter your telephone number.");

phone.focus();

return false;

b

if (password.value =="")

{
window.alert("Please enter your password");
password.focus();
return false;

¥

If (what.selectedIndex < 1)

{

alert("Please enter your
what.focus();

return false;

return true;
}</script>

Styling the form :

course.");

internet {
margin-left: 70px;
font-weight: bold ;
float: left;
clear: left;
width: 100px;
text-align: left;
margin-right: 10px;
font-family:sans-serif,bold, Arial, Helvetica;

font-size:14px;

div {
box-sizing: border-box;
width: 100%;
border: 100px solid black;
float: left;
align-content: center;

align-items: center;

form {

margin: 0 auto;
width: 600px;

}</style>

Form Processing using Perl

Form Processing Program process.pl

This program reads in the data provided by form.html and creates a web page using
that information. The program is written in perl, and must be placed in the cgi-bin
directory. The permissions on the file must be set properly so that the program is
executable.

The program uses a CGI Perl module that has certain functions, one of which

Is &ReadParse. That function grabs the data that was passed by the form, and puts
it into something called an associative array, also known as a hash. The hash, %oin,
can allow the new web page to find the values of the passed variables by
referencing keys relating to the variable names. The command $in{ $key } would
return the value of the variable associated with that key.

To print out the web page itself, much of the standard HTML code looks the same,
but is actually encased in a long print statement. In perl, the print statement can
print multiple lines until it reaches some label. Things that require computation in
perl are located outside the print statements.

#!/usr/bin/perl

Program Name: process.pl

Author: D. W. Hyatt

This program uses the data passed by the form program and creates
a new web page with that information.

use CGI gw(:cgi-lib :standard); # Use CGI modules that let people read
data passed from a form

&ReadParse(%in); # This grabs the data passed by the form and
puts it in an array

$name = $in{"name"}; # Get the user's name and assign to variable
$preference = $in{""choice"}; # Get the choice and assign to variable

Start printing HTML document
print<<EOSTUFF;
Content-type: text/html

<HTML>

<BODY BGCOLOR=WHITE TEXT=BLACK>

<H1> Hello, $name </H1> <!-- Use variables in HTML text -->
You prefer $preference.

EOSTUFF

for ($i=1; $i<=5; Si++) 4 Print name 5 times
{print "$i. $name
";}

print<<eOF; <!-- Finish up document -->
</BODY>

</HTML>

EOF

VBScript and Forms

Simple Validation

You can use Visual Basic Scripting Edition to do much of the form processing that
you'd usually have to do on a server. You can also do things that just can't be done
on the server.

Here's an example of simple client-side validation. The HTML code is for a text
box and a button. If you use Microsoft® Internet Explorer to view the page
produced by the following code, you'll see a small text box with a button next to it.

<HTML>
<HEAD><TITLE>Simple Validation</TITLE>
<SCRIPT LANGUAGE="VBScript">
<l--
Sub Submit_OnClick
Dim TheForm
Set TheForm = Document.ValidForm
If IsSNumeric(TheForm.Textl.Value) Then
If TheForm.Textl.Value < 1 Or TheForm.Textl.Value > 10 Then
MsgBox "Please enter a number between 1 and 10."
Else
MsgBox "Thank you."
End If
Else
MsgBox "Please enter a numeric value."
End If
End Sub
>
</SCRIPT>
</HEAD>
<BODY>
<H3>Simple Validation</H3><HR>
<FORM NAME="ValidForm">
Enter a value between 1 and 10:
<INPUT NAME="Text1" TYPE="TEXT" SIZE="2">
<INPUT NAME="Submit" TYPE="BUTTON" VALUE="Submit">
</FORM>
</BODY>
</HTML>
The difference between this text box and the examples on A Simple VBScript
Page is that the Value property of the text box is used to check the entered value.
To get the Value property, the code has to qualify the reference to the name of the

text box.

http://www.csidata.com/custserv/onlinehelp/vbsdocs/vbs2.htm
http://www.csidata.com/custserv/onlinehelp/vbsdocs/vbs2.htm
http://www.csidata.com/custserv/onlinehelp/vbsdocs/vbs7.htm
http://www.csidata.com/custserv/onlinehelp/vbsdocs/vbs7.htm

You can always write out the full reference Document.ValidForm.Textl. However,
where you have multiple references to form controls, you'll want to do what was
done here. First declare a variable. Then use the Set statement to assign the form to
the variable TheForm. A regular assignment statement, such as Dim, doesn't work
here; you must use Set to preserve the reference to an object.

Using Numeric Values

Notice that the example directly tests the value against a number: it uses

the IsNumeric function to make sure the string in the text box is a number.
Although VBScript automatically converts strings and numbers, it's always a good
practice to test a user-entered value for its data subtype and to use conversion
functions as necessary. When doing addition with text box values, convert the
values explicitly to numbers because the plus sign (+) operator represents both
addition and string concatenation. For example, if Textl contains "1"

and Text2 contains "2", you see the following results:

A = Textl.Value + Text2.Value "Ais "12"
A = CDbl(Textl.Value) + Text2.Value 'Ais3

Validating and Passing Data Back to the Server

The simple validation example uses a plain button control. If a Submit control was
used, the example would never see the data to check it—everything would go
immediately to the server. Avoiding the Submit control lets you check the data, but
it doesn't submit the data to the server. That requires an additional line of code:

<SCRIPT LANGUAGE="VBScript">
<I--
Sub Submit_OnClick
Dim TheForm
Set TheForm = Document.ValidForm
If IsNumeric(TheForm.Textl.Value) Then
If TheForm.Textl.Value < 1 Or TheForm.Textl.Value > 10 Then
MsgBox "Please enter a number between 1 and 10."
Else
MsgBox "Thank you."
TheForm.Submit ' Data correct; send to server.
End If
Else

http://www.csidata.com/custserv/onlinehelp/vbsdocs/vbs602.htm
http://www.csidata.com/custserv/onlinehelp/vbsdocs/vbs573.htm
http://www.csidata.com/custserv/onlinehelp/vbsdocs/vbs139.htm
http://www.csidata.com/custserv/onlinehelp/vbsdocs/vbs240.htm
http://www.csidata.com/custserv/onlinehelp/vbsdocs/vbs240.htm
http://www.csidata.com/custserv/onlinehelp/vbsdocs/vbs418.htm

MsgBox "Please enter a numeric value."
End If

End Sub
-->

</SCRIPT>
To send the data to the server, the code invokes the Submit method on the form

object when the data is correct. From there, the server handles the data just as it
otherwise would—except that the data is correct before it gets there. You'll find
complete information about the Submit method and other methods on the Internet
Explorer Scripting Object Model page.

So far, you've seen only the standard HTML <FORM> objects. Internet Explorer
also lets you exploit the full power of ActiveX™ controls (formerly called OLE
controls) and Java™ objects.

http://www.csidata.com/intdev/sdk/docs/scriptom/
http://www.csidata.com/intdev/sdk/docs/scriptom/

Unit -4

INTRODUCTION TO ASP/JSP- already discussed in unit-3

VRML ldea:- VRML (Virtual Reality Modeling Language)

VRML (Virtual Reality Modeling Language) is a language for describing three-
dimensional (3-D) image sequences and possible user interactions to go with
them. Using VRML, you can build a sequence of visual images into Web settings
with which a user can interact by viewing, moving, rotating, and otherwise
interacting with an apparently 3-D scene. For example, you can view a room and
use controls to move the room as you would experience it if you were walking
through it in real space.

To view a VRML file, you need a VRML viewer or browser, which can be a plug-
in for a Web browser you already have. Among viewers you can download for the
Windows platforms are blaxxun's CC Pro, Platinum's Cosmo Player, WebFX,
WorldView, and Fountain. Whurlwind and VVoyager are two viewers for the Mac.

How do | open a VRML file?

To view a VRML model that is stored on your local disk, choose "Open..." from
the File menu. Click on "Browse" from the Open dialog that appears. Changethe
"Files of type" selector to "All Files", then open the file.

What is VRML how does it differ from HTML?

VRML is to 3D what HTML is to 2D. While HTML specifies how two-
dimensional documents are represented, VRML is a format that describes how
three-dimensional environments can be explored and created on the World Wide
Web.

https://whatis.techtarget.com/definition/3-D-three-dimensions-or-three-dimensional
https://whatis.techtarget.com/definition/plug-in
https://whatis.techtarget.com/definition/plug-in

What are nodes in VRML?

VRML Nodes. A VRML world is just a set of nodes. Each node will have a type,
scale, rotation, translation, color, texture, and some others. There will often be
useful defaults for all these properties. Nodes have for basic types: infomational,
grouping, shape, and transformational.

Java Applet

An applet is a Java program that runs in a Web browser. An applet can be a fully
functional Java application because it has the entire Java API at its disposal.

There are some important differences between an applet and a standalone Java
application, including the following —

An applet is a Java class that extends the java.applet.Applet class.

A main() method is not invoked on an applet, and an applet class will not
define main().

Applets are designed to be embedded within an HTML page.

When a user views an HTML page that contains an applet, the code for the
applet is downloaded to the user's machine.

A JVM is required to view an applet. The JVM can be either a plug-in of the
Web browser or a separate runtime environment.

The JVM on the user's machine creates an instance of the applet class and
invokes various methods during the applet's lifetime.

Applets have strict security rules that are enforced by the Web browser. The
security of an applet is often referred to as sandbox security, comparing the
applet to a child playing in a sandbox with various rules that must be
followed.

Other classes that the applet needs can be downloaded in a single Java
Archive (JAR) file.

Life Cycle of an Applet

Four methods in the Applet class gives you the framework on which you build
any serious applet —

init — This method is intended for whatever initialization is needed for your
applet. It is called after the param tags inside the applet tag have been
processed.

start — This method is automatically called after the browser calls the init
method. It is also called whenever the user returns to the page containing
the applet after having gone off to other pages.

stop — This method is automatically called when the user moves off the
page on which the applet sits. It can, therefore, be called repeatedly in the
same applet.

destroy — This method is only called when the browser shuts down
normally. Because applets are meant to live on an HTML page, you should
not normally leave resources behind after a user leaves the page that
contains the applet.

paint — Invoked immediately after the start() method, and also any time the
applet needs to repaint itself in the browser. The paint() method is actually
inherited from the java.awt.

A "Hello, World" Applet

Following is a simple applet named HelloWorldApplet.java —

import java.applet.*;
import java.awt.*;

public class HelloWorldApplet extends Applet {
public void paint (Graphics g) {
g.drawString (""Hello World", 25, 50);

}
}

These import statements bring the classes into the scope of our applet class —

java.applet.Applet
java.awt.Graphics

Without those import statements, the Java compiler would not recognize the
classes Applet and Graphics, which the applet class refers to.

The Applet Class

Every applet is an extension of the java.applet.Applet class. The base Applet class
provides methods that a derived Applet class may call to obtain information and
services from the browser context.

These include methods that do the following —

o Get applet parameters
. Get the network location of the HTML file that contains the applet
. Get the network location of the applet class directory
« Print a status message in the browser
. Fetch an image
« Fetch an audio clip
« Play an audio clip
« Resize the applet
Additionally, the Applet class provides an interface by which the viewer or

browser obtains information about the applet and controls the applet's execution.
The viewer may —

« Request information about the author, version, and copyright of the applet
« Request a description of the parameters the applet recognizes

« Initialize the applet

« Destroy the applet

. Start the applet's execution

. Stop the applet's execution

The Applet class provides default implementations of each of these methods.
Those implementations may be overridden as necessary.

The "Hello, World" applet is complete as it stands. The only method overridden is
the paint method.

Invoking an Applet

An applet may be invoked by embedding directives in an HTML file and viewing
the file through an applet viewer or Java-enabled browser.

The <applet> tag is the basis for embedding an applet in an HTML file. Following
is an example that invokes the "Hello, World" applet —

<html>

<title>The Hello, World Applet</title>

<hr>

<applet code = "HelloWorldApplet.class" width = "320" height = "120">
If your browser was Java-enabled, a "Hello, World"
message would appear here.

</applet>

<hr>

</html>

The code attribute of the <applet> tag is required. It specifies the Applet class to
run. Width and height are also required to specify the initial size of the panel in
which an applet runs. The applet directive must be closed with an </applet> tag.

If an applet takes parameters, values may be passed for the parameters by adding
<param> tags between <applet> and </applet>. The browser ignores text and
other tags between the applet tags.

Non-Java-enabled browsers do not process <applet> and </applet>. Therefore,
anything that appears between the tags, not related to the applet, is visible in non-
Java-enabled browsers.

The viewer or browser looks for the compiled Java code at the location of the
document. To specify otherwise, use the codebase attribute of the <applet> tag as
shown —

<applet codebase = "https://amrood.com/applets” code ="HelloWorldApplet.class™
width = "320" height = "120">

If an applet resides in a package other than the default, the holding package must
be specified in the code attribute using the period character (.) to separate
package/class components. For example —

<applet = "mypackage.subpackage.TestApplet.class"
width = "320" height = "120">
Getting Applet Parameters

The following example demonstrates how to make an applet respond to setup
parameters specified in the document. This applet displays a checkerboard pattern
of black and a second color.

The second color and the size of each square may be specified as parameters to
the applet within the document.

CheckerApplet gets its parameters in the init() method. It may also get its
parameters in the paint() method. However, getting the values and saving the
settings once at the start of the applet, instead of at every refresh, is convenient
and efficient.

The applet viewer or browser calls the init() method of each applet it runs. The
viewer calls init() once, immediately after loading the applet. (Applet.init() is
implemented to do nothing.) Override the default implementation to insert custom
initialization code.

The Applet.getParameter() method fetches a parameter given the parameter's
name (the value of a parameter is always a string). If the value is numeric or other
non-character data, the string must be parsed.

The following is a skeleton of CheckerApplet.java —

import java.applet.*;
import java.awt.*;

public class CheckerApplet extends Applet {
int squareSize = 50; //initialized to defaultsize
public void init() {}
private void parseSquareSize (String param) {}
private Color parseColor (String param) {}
public void paint (Graphics g) {}

}

Here are CheckerApplet's init() and private parseSquareSize() methods —

public void init () {
String squareSizeParam = getParameter (“'squareSize");
parseSquareSize (squareSizeParam);

String colorParam = getParameter ("color");
Color fg = parseColor (colorParam);

setBackground (Color.black);
setForeground (fg);

}

private void parseSquareSize (String param) {
iIf (param == null) return;

try {

squareSize = Integer.parselnt (param);
} catch (Exception e) {
/I Let default value remain
¥
¥

The applet calls parseSquareSize() to parse the squareSize parameter.
parseSquareSize() calls the library method Integer.parselnt(), which parses a
string and returns an integer. Integer.parselnt() throws an exception whenever its
argument is invalid.

Therefore, parseSquareSize() catches exceptions, rather than allowing the applet
to fail on bad input.

The applet calls parseColor() to parse the color parameter into a Color value.
parseColor() does a series of string comparisons to match the parameter value to
the name of a predefined color. You need to implement these methods to make
this applet work.

Specifying Applet Parameters

The following is an example of an HTML file with a CheckerApplet embedded in
it. The HTML file specifies both parameters to the applet by means of the
<param> tag.

<html>
<title>Checkerboard Applet</title>
<hr>
<applet code = "CheckerApplet.class” width = 480" height = "320">
<param name = "color" value = "blue">
<param name = "squaresize" value = "30">
</applet>
<hr>
</html>

Note — Parameter names are not case sensitive.
Application Conversion to Applets

It is easy to convert a graphical Java application (that is, an application that uses
the AWT and that you can start with the Java program launcher) into an applet
that you can embed in a web page.

Following are the specific steps for converting an application to an applet.

Make an HTML page with the appropriate tag to load the applet code.

Supply a subclass of the JApplet class. Make this class public. Otherwise,
the applet cannot be loaded.

Eliminate the main method in the application. Do not construct a frame
window for the application. Your application will be displayed inside the
browser.

Move any initialization code from the frame window constructor to the init
method of the applet. You don't need to explicitly construct the applet
object. The browser instantiates it for you and calls the init method.

Remove the call to setSize; for applets, sizing is done with the width and
height parameters in the HTML file.

Remove the call to setDefaultCloseOperation. An applet cannot be closed; it
terminates when the browser exits.

If the application calls setTitle, eliminate the call to the method. Applets
cannot have title bars. (You can, of course, title the web page itself, using
the HTML title tag.)

Don't call setVisible(true). The applet is displayed automatically.

Event Handling

Applets inherit a group of event-handling methods from the Container class. The
Container class defines several methods, such as processKeyEvent and
processMouseEvent, for handling particular types of events, and then one catch-
all method called processEvent.

In order to react to an event, an applet must override the appropriate event-
specific method.

import java.awt.event.MouseL.istener;
import java.awt.event.MouseEvent;
import java.applet.Applet;

import java.awt.Graphics;

public class ExampleEventHandling extends Applet implements MouseL.istener {
StringBuffer strBuffer;

public void init() {
addMouseL.istener(this);
strBuffer = new StringBuffer();
addItem("initializing the apple ");
¥

public ~ void start() {
addltem("starting the applet ");

}

public void stop() {
addItem("stopping the applet ");

}

public void destroy() {
addItem("unloading the applet™);

}

void addltem(String word) {
System.out.printin(word);
strBuffer.append(word);
repaint();

¥

public void paint(Graphics g) {
/I Draw a Rectangle around the applet's display area.
g.drawRect(0, 0,
getWidth() - 1,
getHeight() - 1);

/I display the string inside the rectangle.
g.drawString(strBuffer.toString(), 10, 20);

public void mouseEntered(MouseEvent event) {

}

public void mouseExited(MouseEvent event) {

}

public void mousePressed(MouseEvent event) {

}

public void mouseReleased(MouseEvent event) {

}

public void mouseClicked(MouseEvent event) {
addItem("mouse clicked! ");

}
}

Now, let us call this applet as follows —

<html>
<title>Event Handling</title>
<hr>
<applet code = "ExampleEventHandling.class"
width = "300" height = "300">
</applet>
<hr>
</html>

Initially, the applet will display "initializing the applet. Starting the applet.” Then
once you click inside the rectangle, "mouse clicked" will be displayed as well.

Displaying Images

An applet can display images of the format GIF, JPEG, BMP, and others. To
display an image within the applet, you use the drawlmage() method found in the
java.awt.Graphics class.

Following is an example illustrating all the steps to show images —

import java.applet.*;
import java.awt.*;
import java.net.*;

public class ImageDemo extends Applet {
private Image image;
private AppletContext context;

public void init() {
context = this.getAppletContext();
String imageURL = this.getParameter("image");
iIf(imageURL == null) {

imageURL = "java.jpg";

¥

try {
URL url = new URL(this.getDocumentBase(), imageURL);
Image = context.getimage(url);

} catch (MalformedURLEXxception e) {
e.printStackTrace();
// Display in browser status bar
context.showStatus("Could not load image!");

¥

¥

public void paint(Graphics g) {
context.showStatus("Displaying image");
g.drawlmage(image, 0, 0, 200, 84, null);
g.drawString(""www.javalicense.com”, 35, 100);
¥
¥

Now, let us call this applet as follows —

<html>
<title>The ImageDemo applet</title>
<hr>
<applet code = "ImageDemo.class"” width = "300" height = "200">
<param name = "image" value = "java.jpg">
</applet>
<hr>
</html>

Playing Audio
An applet can play an audio file represented by the AudioClip interface in the
java.applet package. The AudioClip interface has three methods, including —

« public void play() — Plays the audio clip one time, from the beginning.

« public void loop() — Causes the audio clip to replay continually.

« public void stop() — Stops playing the audio clip.

To obtain an AudioClip object, you must invoke the getAudioClip() method of the
Applet class. The getAudioClip() method returns immediately, whether or not the

http://www.javalicense.com/

URL resolves to an actual audio file. The audio file is not downloaded until an
attempt is made to play the audio clip.

Following is an example illustrating all the steps to play an audio —

import java.applet.*;
import java.awt.*;
import java.net.*;

public class AudioDemo extends Applet {
private AudioClip clip;
private AppletContext context;

public void init() {
context = this.getAppletContext();
String audioURL = this.getParameter(audio™);
if(audioURL == null) {
audioURL = "default.au™;
¥

try {
URL url = new URL(this.getDocumentBase(), audioURL);

clip = context.getAudioClip(url);

} catch (MalformedURLException e) {
e.printStackTrace();
context.showStatus("Could not load audio file!");

}
}

public void start() {
if(clip = null) {
clip.loop();

}
}

public void stop() {
if(clip '= null) {
clip.stop();

¥
}

Now, let us call this applet as follows —

<html>
<title>The ImageDemo applet</title>
<hr>
<applet code = "ImageDemo.class" width = "0" height = "0">
<param name = "audio" value = "test.wav'>
</applet>
<hr>
</html>

Java Servlet

Servlets are Java classes which service HTTP requests and implement
the javax.servlet.Servlet interface. Web application developers typically write
servlets that extend javax.servlet.http.HttpServlet, an abstract class that
implements the Servlet interface and is specially designed to handle HTTP
requests.

Sample Code

Following is the sample source code structure of a servlet example to show Hello
World —

/I Import required java libraries
import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

I/ Extend HttpServlet class
public class HelloWorld extends HttpServlet {

private String message;

public void init() throws ServletException {
// Do required initialization
message = "Hello World";

}

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

/I Set response content type
response.setContentType("text/html™);

/I Actual logic goes here.
PrintWriter out = response.getWriter();
out.printin("<h1>" + message + "</h1>");

}

public void destroy() {
/[do nothing.
¥
¥

Compiling a Servlet

Let us create a file with name HelloWorld.java with the code shown above. Place
this file at C:\ServletDevel (in Windows) or at /usr/ServletDevel (in Unix). This
path location must be added to CLASSPATH before proceeding further.

Assuming your environment is setup properly, go in ServletDevel directory and
compile HelloWorld.java as follows —

$ javac HelloWorld.java

If the servlet depends on any other libraries, you have to include those JAR files
on your CLASSPATH as well. | have included only serviet-api.jar JAR file
because I'm not using any other library in Hello World program.

This command line uses the built-in javac compiler that comes with the Sun
Microsystems Java Software Development Kit (JDK). For this command to work
properly, you have to include the location of the Java SDK that you are using in
the PATH environment variable.

If everything goes fine, above compilation would produce HelloWorld.class file
in the same directory. Next section would explain how a compiled servlet would
be deployed in production.

Servlet Deployment

By default, a servlet application is located at the path <Tomcat-
installationdirectory>/webapps/ROOT and the class file would reside in <Tomcat-
installationdirectory>/webapps/ROOT/WEB-INF/classes.

If you have a fully qualified class name of com.myorg.MyServlet, then this
servlet class must be located in WEB-INF/classes/com/myorg/MyServlet.class.

For now, let us copy HelloWorld.class into <Tomcat-
installationdirectory>/webapps/ROOT/WEB-INF/classes and create following
entries in web.xml file located in <Tomcat-installation-

directory>/webapps/ROOT/WEB-INF/

<servlet>
<servlet-name>HelloWorld</servlet-name>
<servlet-class>HelloWorld</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>HelloWorld</servlet-name>
<url-pattern>/HelloWorld</url-pattern>
</servlet-mapping>

Above entries to be created inside <web-app>...</web-app> tags available in
web.xml file. There could be various entries in this table already available, but
never mind.

You are almost done, now let us start tomcat server using <Tomcat-
installationdirectory>\bin\startup.bat (on Windows) or <Tomcat-
installationdirectory>/bin/startup.sh (on Linux/Solaris etc.) and finally
type http://localhost:8080/HelloWorld in the browser's address box. If
everything goes fine, you would get the following result

e http:#flocalhost: B0B0/HelloWorld - Windows Internet Explorer

g =Y ® ttp:/ilocalhost: 8080 Hello'World

File Edit View Favorites Tools Help
http:/ localhost: 8030 Hello'WWorld

Hello World

Introduction to ASP.NET Technology

ASP.NET is a web development platform, which provides a programming model,
a comprehensive software infrastructure and various services required to build up
robust web applications for PC, as well as mobile devices.

ASP.NET works on top of the HTTP protocol, and uses the HTTP commands and
policies to set a browser-to-server bilateral communication and cooperation.

ASP.NET is a part of Microsoft .Net platform. ASP.NET applications are
compiled codes, written using the extensible and reusable components or objects
present in .Net framework. These codes can use the entire hierarchy of classes in
Net framework.

The ASP.NET application codes can be written in any of the following languages:

. C#
« Visual Basic.Net
« Jscript
. J#
ASP.NET is used to produce interactive, data-driven web applications over the

internet. It consists of a large number of controls such as text boxes, buttons, and
labels for assembling, configuring, and manipulating code to create HTML pages.

ASP.NET Web Forms Model

ASP.NET web forms extend the event-driven model of interaction to the web
applications. The browser submits a web form to the web server and the server
returns a full markup page or HTML page in response.

All client side user activities are forwarded to the server for stateful processing.
The server processes the output of the client actions and triggers the reactions.

Now, HTTP is a stateless protocol. ASP.NET framework helps in storing the
information regarding the state of the application, which consists of:

. Page state
« Session state

The page state is the state of the client, i.e., the content of various input fields in
the web form. The session state is the collective information obtained from

various pages the user visited and worked with, i.e., the overall session state. To
clear the concept, let us take an example of a shopping cart.

User adds items to a shopping cart. Items are selected from a page, say the items
page, and the total collected items and price are shown on a different page, say the
cart page. Only HTTP cannot keep track of all the information coming from
various pages. ASP.NET session state and server side infrastructure keeps track of
the information collected globally over a session.

The ASP.NET runtime carries the page state to and from the server across page
requests while generating ASP.NET runtime codes, and incorporates the state of
the server side components in hidden fields.

This way, the server becomes aware of the overall application state and operates
in a two-tiered connected way.

The ASP.NET Component Model

The ASP.NET component model provides various building blocks of ASP.NET
pages. Basically it is an object model, which describes:

« Server side counterparts of almost all HTML elements or tags, such as
<form> and <input>.

« Server controls, which help in developing complex user-interface. For
example, the Calendar control or the Gridview control.

ASP.NET is a technology, which works on the .Net framework that contains all
web-related functionalities. The .Net framework is made of an object-oriented
hierarchy. An ASP.NET web application is made of pages. When a user requests
an ASP.NET page, the IIS delegates the processing of the page to the ASP.NET
runtime system.

The ASP.NET runtime transforms the .aspx page into an instance of a class,
which inherits from the base class page of the .Net framework. Therefore, each
ASP.NET page is an object and all its components i.e., the server-side controls are
also objects.

Components of .Net Framework 3.5

Before going to the next session on Visual Studio.Net, let us go through at the
various components of the .Net framework 3.5. The following table describes the
components of the .Net framework 3.5 and the job they perform:

Components and their Description

(1) Common Language Runtime or CLR

It performs memory management, exception handling, debugging,
security checking, thread execution, code execution, code safety,
verification, and compilation. The code that is directly managed by the
CLR is called the managed code. When the managed code is compiled,
the compiler converts the source code into a CPU independent
intermediate language (IL) code. A Just In Time(JIT) compiler
compiles the IL code into native code, which is CPU specific.

(2) .Net Framework Class Library

It contains a huge library of reusable types. classes, interfaces,
structures, and enumerated values, which are collectively called types.

(3) Common Language Specification

It contains the specifications for the .Net supported languages and
implementation of language integration.

(4) Common Type System

It provides guidelines for declaring, using, and managing types at
runtime, and cross-language communication.

(5) Metadata and Assemblies

Metadata is the binary information describing the program, which is
either stored in a portable executable file (PE) or in the memory.
Assembly is a logical unit consisting of the assembly manifest, type
metadata, IL code, and a set of resources like image files.

(6) Windows Forms

Windows Forms contain the graphical representation of any window
displayed in the application.

(7) ASP.NET and ASP.NET AJAX

ASP.NET is the web development model and AJAX is an extension of
ASP.NET for developing and implementing AJAX functionality.
ASP.NET AJAX contains the components that allow the developer to
update data on a website without a complete reload of the page.

(8) ADO.NET

It is the technology used for working with data and databases. It
provides access to data sources like SQL server, OLE DB, XML etc.
The ADO.NET allows connection to data sources for retrieving,
manipulating, and updating data.

(9) Windows Workflow Foundation (WF)

It helps in building workflow-based applications in Windows. It
contains activities, workflow runtime, workflow designer, and a rules
engine.

(10) Windows Presentation Foundation

It provides a separation between the user interface and the business
logic. It helps in developing visually stunning interfaces using
documents, media, two and three dimensional graphics, animations,
and more.

(11) Windows Communication Foundation (WCF)

It is the technology used for building and executing connected
systems.

(12) Windows CardSpace

It provides safety for accessing resources and sharing personal
information on the internet.

(13) LINQ
It imparts data querying capabilities to .Net languages using a syntax

which is similar to the tradition query language SQL.

NET vs Competing Technologies

Microsoft .NET and Java are two leading technologies for building softwares,
websites and web apps. With their growing popularity, most of the businesses face
the challenge to choose from either of them as a primary development tool for
creating intuitive applications. Both these technologies enable the creation of large-
scale business applications and have evolved over the years to support and enhance
desktop & server-side application development.

Between the two, you must first learn about the applications created using either of
the technologies. Through this comparison blog, we aim to highlight the difference
between Java and .NET. Our objective is to help businesses understand how either
of the environments can fit in their operational requirements.

A NET or Microsoft technology-based solution might be the correct choice for an
Enterprise-grade application which requires strict security and high level of data
integrity, whereas a Java-based solution would be suitable when the primary
requirement is cross-platform operability in-line with its motto “write once, deploy
anywhere.” Learn more about the new features of ASP.NET Core that enable
development of modern web & cloud applications.

.NET vs Java — The Differences

Java is object-oriented programming (OOPs) language and .NET is a framework
with C# as its programming language. Both Java and .NET are based on the object-
oriented concept and are useful for developing enterprise solutions.

Feature Microsoft .NET Java

Programming C#, VB.NET, C++, .NET, Java, Clojure, Groovy, Scala, PHP,
Languages PHP, Ruby, Python & more Ruby, Python, JavaScript & more
Runtime CLR JVM

Supported IDE Microsoft Visual Studio, Eclipse, IntelliJ Idea, Oracle

https://www.rishabhsoft.com/java-application-development
https://www.rishabhsoft.com/blog/asp.net-core-features

Server Components

GUI Frameworks

Web Services
Support

Unit Testing

Web Application
Framework

Web Server

Scripting

Data Access

HTTP Engine

Remoting

Rider, MonoDevelop

.NET COM, OLE
Automation

WPF, WinForms, UWP

Built-in

Microsoft Unit Testing
Framework, NUnit

ASP.NET Core, Spring .NET

ASP.NET

ADO.NET, oLeDB, Dapper
& more

1S

SOAP, OpenAPIl, DCOM &
More

NetBeans, and Oracle JDeveloper

EJBs, JCA, IMX

JavaFX, Swing GUI Java, AWT,
SWT & more

Add-on

JUnit

Spring, Apache Wicket, JSF, Struts
& more

JSF

JDBC

Application Servers from Multiple
Vendors, Glassfish, Tomcat &
More

RMI, Rest API, GraphQL & More

Confused Between Java and .NET?Our developers can help you find the right
match based on your business needs and operational requirements

Request Call Back

Both are intended to simplify the development of apps by providing a system of
modular, standardized components and services. The following head-to-head Java
vs .NET comparison can help businesses make a better choice.

.NET Framework vs. Java

Platform

Multi-platform portability is ensured by compiling source code into an
intermediate language executable by all Java Virtual Machines (JVM). The
JVM translates the code into bytecode making it compatible with the
machine code according to the operating system on which it is installed.

The .NET framework is secure than most of the open-source platforms. It
comes with the Common Language Runtime (CLR) framework, which
supports the use of components, developed in multiple languages. Further,
Microsoft has even developed a CLR engine that converts the program code
into the Microsoft Intermediate Language (MSIL) and finally “just in time,”
translates it into native machine code.

Language Support

The peculiarity of Java lies in the sharing of a single language across
different platforms. However, the programs written with it work
independently across different OS types. Java supports programming and
scripting languages like Python, Ruby, Groovy, Scala, and Kotlin.

The DotNet framework supports languages especially for backend
development and web services, like C# and C++. It currently supports about
20 languages. It allows you to program in any language you choose
(including, Vb.NET, C # .NET, Perl and many others). However, it
generates a specific code for the Windows platform only.

Therefore, while .NET supports a multi-programming environment; Java is
focused on a single programming language that supports multiple
environments. Learn more about the top Java benefits for SMBs.

IDE

Java IDE comprises of a code editor, compiler, and debugger. Eclipse,
IntelliJ 1dea, Oracle NetBeans, and Oracle JDeveloper are the main IDEs
designed to make writing and testing of the code easier. These IDEs come
with inbuilt plugins and auto-fill options, which boosts Java’s flexibility and
provides scope for innovation.

The .NET platform is integrated with Visual Studio, which allows editing,
compiling, and run-time customization of the behavior of APIs using

https://www.rishabhsoft.com/blog/java-benefits-for-small-businesses
https://www.rishabhsoft.com/contact-rishabh-software

standard library macros. Further, developers do not need to evaluate the
IDEs and other tools in advance.

Third-Party Integrators

Java facilitates the integration of third-party tools and offers developers the
freedom to choose their choice of OS during development.

NET offers integrated services like SharePoint and Microsoft Exchange. It
is rich in functions designed for creating applications on the Windows
platform. Interoperability is unique to .NET, which allows its applications to
run seamlessly on other platforms too.

Performance & Compatibility

Java does not require conversion to machine language until the code gets
executed. While .NET is compiled and then run on the system where they
are deployed. That is why C# works better in a runtime environment.
Versions of Java older than Java7 does not support the simplified data
structure, switch case.

NET supports switch case for string variable in C# and native generic data.
Query wise, Ling (Language Integrated Query) is not supported in Java
unlike in .NET, but the latter allows questions on stored procedures.
Security

For open source platforms like Java, security always remains a concern due
to a lack of professional support. Since .NET is of a proprietary platform,
Microsoft takes care of the security aspect. It provides round-the-clock
support for its enterprise clients.

JavaScript is a lightweight, interpreted programming language with object-oriented capabilities that allows you to
build interactivity into otherwise static HTML pages.

JavaScript code is not compiled but translated by the translator. This translator is embedded into the browser and is
responsible for translating javascript code.

Key Points
o Itis Lightweight, interpreted programming language.
o Itis designed for creating network-centric applications.
e Itis complementary to and integrated with Java.

o Itis complementary to and integrated with HTML
e Itisan open and cross-platform

JavaScript Statements

JavaScript statements are the commands to tell the browser to what action to perform. Statements are separated by
semicolon (;).

JavaScript statement constitutes the JavaScript code which is translated by the browser line by line.

Example of JavaScript statement:

document.getElementById ("demo") .innerHTML = "Welcome";

Following table shows the various JavaScript Statements —

Sr.No. Statement Description
. A block of statements in which execution of code depends upon different cases. The interpreter checks
switch . . . h ;
1. case each case against the value of the expression until a match is found. If nothing matches, a default

condition will be used.
The if statement is the fundamental control statement that allows JavaScript to make decisions and execute

2 If else statements conditionally.
. The purpose of a while loop is to execute a statement or code block repeatedly as long as expression is
3. While . . .
true. Once expression becomes false, the loop will be exited.
4, do while Block of statements that are executed at least once and continues to be executed while condition is true.
5. for Same as while but initialization, condition and increment/decrement is done in the same line.
6. for in This loop is used to loop through an object's properties.
. The continue statement tells the interpreter to immediately start the next iteration of the loop and skip
7. continue .
remaining code block.
8. break The break statement is used to exit a loop early, breaking out of the enclosing curly braces.
. A function is a group of reusable code which can be called anywhere in your programme. The keyword
9. function L ;
function is used to declare a function.
10. return Return statement is used to return a value from a function.
11, var Used to declare a variable.
12. Try A block of statements on which error handling is implemented.
13. Catch A block of statements that are executed when an error occur.
14. throw Used to throw an error.

JavaScript Comments

JavaScript supports both C-style and C++-style comments, thus:

e Any text between a// and the end of a line is treated as a comment and is ignored by JavaScript.

o Any text between the characters /* and */ is treated as a comment. This may span multiple lines.

e JavaScript also recognizes the HTML comment opening sequence <!--. JavaScript treats this as a single-line
comment, just as it does the // comment.-->

e The HTML comment closing sequence --> is not recognized by JavaScript so it should be written as //-->.

Example

<script language="javascript" type="text/javascript">
<!--

// this is a comment. It is similar to comments in C++

/*
* This is a multiline comment in JavaScript
* It is very similar to comments in C Programming
*/
//==>
<script>

JavaScript variable

Variables are referred as named containers for storing information. We can place data into these containers and
then refer to the data simply by naming the container.

Rules to declare variable in JavaScript
Here are the important rules that must be followed while declaring a variable in JavaScript.

e InJavaScript variable names are case sensitive i.e. a is different from A.

« Variable name can only be started with a underscore (_) or a letter (from ato z or Ato Z), or dollar ($)
sign.

e Numbers (0 to 9) can only be used after a letter.

« No other special character is allowed in variable name.

Before you use a variable in a JavaScript program, you must declare it. Variables are declared with the var
keyword as follows —

<script type="text/javascript">
<!l--
var money;
var name, age;
//==>
</script>

Variables can be initialized at time of declaration or after declaration as follows —

<script type="text/javascript">
<l--
var name = "Ali";
var money;
money = 2000.50;
//==>
</script>

Javascript Data Type
There are two kinds of data types as mentioned below —

e Primitive Data Type
« Non Primitive Data Type

The following table describes Primitive Data Types available in javaScript

Sr.No. Datatype Description
String

1.
Can contain groups of character as single value. It is represented in double quotes.E.g. var x= “tutorial”.
Numbers

2.
Contains the numbers with or without decimal. E.g. var x=44, y=44.56;
Booleans

3.
Contain only two values either true or false. E.g. var x=true, y= false.
Undefined

4,
Variable with no value is called Undefined. E.qg. var X;
Null

5.

If we assign null to a variable, it becomes empty. E.g. var x=null;

The following table describes Non-Primitive Data Types in javaScript

Sr.No. Datatype Description
1 Array

' Can contain groups of values of same type. E.g. var x={1,2,3,55};
2 Objects

Objects are stored in property and value pair. E.g. var rectangle = { length: 5, breadth: 3};
JavaScript Functions

Function is a group of reusable statements (Code) that can be called any where in a program. In javascript function
keyword is used to declare or define a function.

Key Points

o To define a function use function keyword followed by functionname, followed by parentheses ().

« In parenthesis, we define parameters or attributes.

e The group of reusabe statements (code) is enclosed in curly braces {}. This code is executed whenever
function is called.

Syntax

function functionname (pl, p2) {
function coding..

}

JavaScript Operators

Operators are used to perform operation on one, two or more operands. Operator is represented by a symbol such
as +, =, *, % etc. Following are the operators supported by javascript —

e Arithmetic Operators

o Comparison Operators

e Logical (or Relational) Operators
e Assignment Operators

« Conditional (or ternary) Operators
e Arithmetic Operators

Arithmatic Operators

Following table shows all the arithmetic operators supported by javascript —

Operator Description Example

+ Add two operands. 10 + 10 will give 20
- Subtract second operand from the first. 10— 10 will give O

* Multiply two operands. 10 * 30 will give 300
/ Divide numerator by denominator 10/10 will give 1

% It is called modulus operator and gives remainder of the division. 10 % 10 will give 0
++ Increment operator, increases integer value by one 10 ++ will give 11

- Decrement operator, decreases integer value by one 10 — will give 9

Comparison Operators

Following table shows all the comparison operators supported by javascript —

Operator Description Example

== Checks if values of two operands are equal or not, If yes then condition becomes true. tlr?Je:: 10 will give
Not Equal to operator = o

1= Checks if the value of two operands is equal or not, if values are not equal then condition %35:;10 will give
becomes true.
Greater Than operator S

> Checks if the value of left operand is greater than the value of right operand, if yes then tzr%; 10 will give
condition becomes true.
Less than operator 10 < 20 will give

< Checks if the value of left operand is less than the value of right operand, if yes then condition true g

becomes true.
Greater than or equal to operator
>= Checks if the value of left operand is greater than or equal to the value of right operand, if yes
then condition becomes true.
Less than or equal to operator

<= Checks if the value of left operand is less than or equal to the value of right operand, if yes
then condition becomes true.

Logical Operators

10 >=20 will give
false

10 <=20 will give
true.

Following table shows all the logical operators supported by javascript —

Operator Description Example

&& Logical AND operator returns true if both operands are non zero. 10 && 10 will give true.

| Logical OR operator returns true If any of the operand is non zero 10 || 0 will give true.

! Logical NOT operator complements the logical state of its operand. ! (10 && 10) will give false.

Assignment Operators

Following table shows all the assignment operators supported by javascript —

Operator Description

Simple Assignment operator
Assigns values from right side operands to left side operand.

Add AND assignment operator
It adds right operand to the left operand and assign the result to left operand

Subtract AND assignment operator
-= It subtracts right operand from the left operand and assign the result to left
operand

Multiply AND assignment operator
*= It multiplies right operand with the left operand and assign the result to left
operand

Divide AND assignment operator
/= It divides left operand with the right operand and assign the result to left
operand

Modulus AND assignment operator
%= Modulus AND assignment operator, It takes modulus using two operands and
assign the result to left operand

Conditional Operator

It is also called ternary operator, since it has three operands.

Operator Description Example
?: Conditional Expression If Condition is true? Then value X : Otherwise value Y

Control Structure

Example

C = A + B will assign value of A
+Binto C

C+=AisequivalenttoC=C +
A

C-=AisequivalenttoC=C-A

C*=AisequivalenttoC=C*
A

C/=AisequivalenttoC=C/A

C %= AisequivalenttoC=C %
A

Control structure actually controls the flow of execution of a program. Following are the several control structure

supported by javascript.

e if...else
e Switch case
e do while loop

e while loop
o forloop
If ... else

The if statement is the fundamental control statement that allows JavaScript to make decisions and execute

statements conditionally.

Syntax

if (expression) {

Statement (s) to be executed if expression is true

Example

<script type="text/javascript">

<!--
var age = 20;
if(age > 18) {

document.write ("Qualifies for driving");

}

//==>

</script>
Switch case

The basic syntax of the switch statement is to give an expression to evaluate and several different statements to
execute based on the value of the expression. The interpreter checks each case against the value of the expression
until a match is found. If nothing matches, a default condition will be used.

Syntax

switch (expression) {
case condition 1l: statement (s)
break;
case condition 2: statement (s)
break;

case condition n: statement (s)

break;
default: statement (s)

Example

<script type="text/javascript">

<l --
var grade='A"';
document.write ("Entering switch block
");
switch (grade) {
case 'A': document.write ("Good job
");
break;
case 'B': document.write ("Pretty good
");
break;
case 'C': document.write ("Passed
");
break;
case 'D': document.write ("Not so good
");
break;
case 'F': document.write ("Failed
");
break;
default: document.write ("Unknown grade
")
}
document.write ("Exiting switch block");
//==>
</script>
Do while Loop

The do...while loop is similar to the while loop except that the condition check happens at the end of the loop. This
means that the loop will always be executed at least once, even if the condition is false.

Syntax

do {
Statement (s) to be executed;
} while (expression);

Example

<script type="text/javascript">

<!--
var count = 0;
document.write ("Starting Loop" + "
");
do{
document.write ("Current Count : " + count + "
");
count++;
}while (count < 0);
document.write ("Loop stopped!");
//==>
</script>

This will produce following result —

Starting Loop
Current Count : O
Loop stopped!

While Loop

The purpose of a while loop is to execute a statement or code block repeatedly as long as expression is true. Once
expression becomes false, the loop will be exited.

Syntax

while (expression) {
Statement (s) to be executed if expression is true

}

Example

<script type="text/javascript">

<l--
var count = 0;
document.write ("Starting Loop" + "
");
while (count < 10){
document.write ("Current Count : " + count + "
");
count++;
}
document.write ("Loop stopped!");
//==>
</script>

This will produce following result —

Starting Loop
Current Count
Current Count
Current Count
Current Count

w N = O

Current Count
Current Count
Current Count
Current Count
Current Count
Current Count
Loop stopped!

For Loop

© 00 J o) U1

The for loop is the most compact form of looping and includes the following three important parts —

o The loop initialization where we initialize our counter to a starting value. The initialization statement is
executed before the loop begins.

o The test statement which will test if the given condition is true or not. If condition is true then code given
inside the loop will be executed otherwise loop will come out.

« The iteration statement where you can increase or decrease your counter.

Syntax

for (initialization; test condition; iteration statement) {
Statement (s) to be executed if test condition is true

}
Example

<script type="text/javascript">

<!l--
var count;
document.write ("Starting Loop" + "
");
for (count = 0; count < 10; count++) {
document.write ("Current Count : " + count);
document.write ("
");
}
document.write ("Loop stopped!");
//==>
</script>

This will produce following result which is similar to while loop —

Starting Loop
Current Count
Current Count
Current Count
Current Count
Current Count
Current Count
Current Count
Current Count
Current Count
Current Count
Loop stopped!

Creating Sample Program

O W Jo Ul d WNEFE O

Following is the sample program that shows time, when we click in button.

<html>
<body>

<button onclick="this.innerHTML=Date () ">The time is?</button>
<p>Click to display the date.</p>
<button onclick="displayDate () ">The time is?</button>
<script>
function displayDate () {
document.getElementById ("demo") .innerHTML = Date();
}</script>

<p id="demo"></p>
</script>

</body>
</html>

Output

file:///D:/intern,..ogy/CSS/time.html
& @ file///Dfintemet technology/C: ~ € | ll-Googte Pl ¥ 8B $ K =

18 Most Visited | | Getting Started | dhtml || Suggested Sites || Web Slice Gallery

[Sun Jun 152014 07.25.:37 GMT+0530 (India Standard Time) |

Click the button to display the date.
The time is?

Sun Jun 15 2014 07:25:38 GMT+0530 (India Standard Time)

https://www.tutorialspoint.com/internet technologies/
https://www.javatpoint.com/javascript-tutorial

https://www.tutorialspoint.com/internet_technologies/
https://www.javatpoint.com/javascript-tutorial

